Speaker
Description
We study multistrange Ca, Sn and Pb hypernuclei with $\Lambda\Lambda$ pairing correlations by using the multidimensionally-constraint relativistic Hartree-Bogoliubov (MDC-RHB) model. The axial deformation is allowed and the $\Lambda\Lambda\omega$-tensor coupling is included to reproduce the small spin-orbit splittings for $\Lambda$ hyperon. The separable pairing force of finite-range form is used for the pp channel and the ratio of the $\Lambda\Lambda$ pairing to NN pairing strength is determined from the quark model. We find that the shell structure for $\Lambda$ is very different from that in normal nuclei because of the small spin-orbit splittings in the single $\Lambda$ spectrum. The pairing energy is similar with HFB calculation results. The $\Lambda\Lambda$ pairing makes the $\Lambda$ density distribution more symmetric but its influence on the total density distribution can be neglected.