3–8 Aug 2024
RIKEN Wako campus
Asia/Tokyo timezone

Quantum mechanical softening of hypertriton

Not scheduled
20m
Suzuki Umetaro Hall (RIKEN Wako campus)

Suzuki Umetaro Hall

RIKEN Wako campus

Poster only Aug. 6 afternoon

Speaker

Daineng Liu

Description

Understanding the properties of hypernuclei helps to constrain the interaction between hyperon and nucleon, which is known to play an essential role in determining the properties of neutron stars. Experimental measurements have suggested that the hypertriton (Λ3H), the lightest hypernucleus, exhibits a halo structure with a deuteron core encircled by a Λ hyperon at a distance of about 10 fm. This large Λd distance in Λ3H wave function is found to cause a suppressed Λ3H yield and a softening of its transverse momentum (pT) spectrum in relativistic heavy-ion collisions. Within the coalescence model based on nucleons and Λ hyperons from a microscopic hybrid hydro model with a hadronic afterburner for nuclear cluster production in Pb-Pb collisions at sNN= 5.02 TeV, we show how this softening of the hypertriton pT spectrum appears and leads to a significantly smaller mean pT for Λ3H than for helium-3 (3He). The latter is opposite to the predictions from the blast-wave model which assumes that Λ3H and 3He are thermally produced at the kinetic freeze-out of heavy ion collisions. The discovered quantum mechanical softening of the (anti-)hypertriton spectrum can be experimentally tested in relativistic heavy-ion collisions at different collision energies and centralities and used to obtain valuable insights to the mechanisms for light (hyper-)nuclei production in these collisions.

Field of Research Strangeness
Experiment/Theory Experiment

Primary author

Daineng Liu

Presentation materials

There are no materials yet.