20–24 Aug 2022
Shinrin-Koen Heitage Resort
Asia/Tokyo timezone

Finite range Simple effective interaction with tensor terms

22 Aug 2022, 14:30
15m
Shinrin-Koen Heitage Resort

Shinrin-Koen Heitage Resort

https://www.hotel-heritage.co.jp/en/
Theoretical Nuclear Physics Young Scientist Session 2

Speaker

Ms Parveen Bano (Sambalpur University)

Description

The crossing of the $2p_{3/2}$ and $1f_{5/2}$ proton s.p. energy levels in neutron-
rich Ni isotopes and the magic character of the atomic number Z=28 in
this isotopic chain is a subject of current interest from both, experimental and theoretical points of view[1,2]. The finite range Simple effective interaction(SEI) is able to reproduce the experimentally observed crossing even without requiring a tensor term. Using SEI, the crossing of the $1f_{5/2}$ and $2p_{3/2}$ s.p. proton levels in the isotopic chain of Ni and the spin inversion in the ground-state of Cu-isotopes are found to be a function of nuclear matter(NM) incompressibility. The role of the incompressibility is also noticed in the study of sd- level splitting in Ca isotopic chain using the SEI model. Experimental studies[3,4] establish that the proton $2s_{1/2}$ and $1d_{3/2}$ s.p. levels invert going from $^{40}Ca$ to $^{48}Ca$. However, the observed proton gaps between the $1h_{11/2}$ and $1g_{7/2}$ shells in Sn and Sb isotopic chain, and the neutron gaps between the $1i_{13/2}$ and $1h_{9/2}$ shells in N=82 isotones[5] require explicit consideration of a tensor part with SEI as the central contribution is not enough to initiate the required level splittings. In this work, we will analyze the observed proton and neutron single-particle energy gaps in Sn and N=82 isotopic and isotonic chains respectively by adding a short-range tensor force to SEI within the Quasi-local Density Functional Theory (QLDFT) formalism and compared the results with the available experimental data[5] as well as with the predictions of other mean field models such as the SIII and SAMI-T Skyrme forces and the D1MTd Gogny interaction.
References
[1] L. Olivier, S. Franchoo, M. Niikura, Z. Vajta, D. Sohler, P. Doornenbal,
A. Obertelli, Y. Tsunoda, T. Otsuka, G. Authele, et al., Phys. Rev. Lett.
119, 192501 (2017).
[2] E. Sahin, F. L. Bello Garrote, Y. Tsunoda, T. Otsuka, G. de Angelis, A.
Grgen, M. Niikura, S. Nishimura, Z. Y. Xu, H. Baba et al., Phys. Rev.
Lett. 118, 242502 (2017).
[3] P. Doll, G. J.Wagner, K. T. Knöpfle, and G. Mairle, Nucl. Phys. A 263,
210 (1976).
[4] C. A. Ogilvie et al., Nucl. Phys. A 465, 445 (1987).
[5] J P Schiffer, S J Freeman , J A Caggiano, C Deibel, A Heinz , et al.,
Phys. Rev. Lett. 92, 162501(2004).

Primary authors

Ms Parveen Bano (Sambalpur University) Prof. X. Viñas (Departament de Fı́sica Quàntica i Astrofı́sica (FQA), Universitat de Barcelona (UB), Martı́ i Franquès 1, E-08028 Barcelona, Spain) Prof. T. R. Routray (School of Physics, Sambalpur University, Jyotivihar-768 019, India) Dr M. Centelles (Departament de Fı́sica Quàntica i Astrofı́sica (FQA), Universitat de Barcelona (UB), Martı́ i Franquès 1, E-08028 Barcelona, Spain) Dr M. Anguiano (Departamento de Fı́sica Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada, Spain) Prof. L. M. Robledo (Departamento de Fı́sica Teórica and CIAFF,Universidad Autónoma de Madrid,E-28049 Madrid, Spain)

Presentation materials