Presentation materials
In accelerator physics, particle beams require constant fine tuning for nominal operation. As such, beam monitoring carries great importance. Detectors with position measurement capabilities are required to enact such beam diagnosis whilst causing minimum disruption to the beam quality. A detector of this type is required at the Rare Radio-Isotope Ring at the Radio Isotope Beam Factory (RIBF)...
High-intensity radioactive isotope (RI) beams provide various opportunities to perform important studies of nuclear physics. In the experiment, position detectors have an essential role in the measurement of momentum and emittance, and particle identification. Common technique used for position deduction in conventional detectors such as Delay-line parallel plate avalanche counter (DL-PPAC)...
Ionization chambers are often used as
Pfutzner et al. proposed that the high energy resolution of the ionization...
In this study we estimated the astrophysical rates of the
A new plunger based facility has been recently developed at Institute of Modern Physics (IMP), Lanzhou. This facility will be used to measure the nuclear level lifetimes in ns-ps range and the g-factor, providing deep insight into the study of nuclear wave functions and structure of nucleus. It is based on the plunger technique of Alexander and Bell [1], well known at present for the...
Processing of spent fuel from nuclear power plants is a worldwide problem. The high-level radioactive waste is the product after the reprocessing of spent fuel, which includes minor actinides and fission products of radioactive waste. Especially,
The proton is one of the essential bricks of matter, alongside with neutron; we know its mass, its charge but not its radius. Before 2010, the proton charge radius was thought to be known by physicists, measurements of the proton charge radius converged to a value of 0.8775±0.051 fm [1] using two different methods: electron scattering and hydrogen spectroscopy. However, in 2010 a German team...
The
George Gamow, about 90 years ago, famously proposed an explanation of α decay phenomena utilizing the quantum tunneling effect of preformed α particles[1]. Since then, α clusters are considered as a prerequisite in heavy nuclei, but the clear experimental evidence of its existence has not been reported until today. Instead, α clustering at the low-density nuclear surface could be one plausible...