Nuclear Direct Reactions to Continuum 2

- How to get Nuclear Structure Information -

Munetake ICHIMURA (RNC)

III. PWBA I – Fundamental Examples

- 1. PWBA
- 2. Fundamental Examples
 - 2.1. Simplest (fundamental) case
 - 2.2. Cases with spin and isospin
 - 2.3. Reactions of composite particles
 - 2.4. Rearrangement collision
 - 2.5. Exchange processes

IV. PWBA II –Reactions to Continuum

- 1. Simplest Reaction
- 2. Response Function Formalism
- 3. Summary

III PWBA I

1. PWBA

As the first stage 1

Let's consider reactions in **PWBA** (Plane Wave Born Approximation)

- This is an ideal clean impulse model.
- This may not be realistic, but tells us fundamental structure of the reactions.
- We can learn what information can be obtained from the reaction considered.
- This is very important to design (or analyse) experiments.

Let's consider a final two-body reaction

$$a + A \longrightarrow b + B$$

usually written as

1.1 Born Approximation

Assume that the interaction works only once

$$T_{fi} = \langle \phi_f \Phi_b \Phi_B | V | \Phi_A \Phi_a \phi_i \rangle$$

 Φ_A : wave function of the particle A

 Φ_B : wave function of the particle B

 Φ_a : wave function of the particle a

 Φ_b : wave function of the particle b

 ϕ_i : w. f. of the relative motion between a and A

 ϕ_f : w. f. of the relative motion between b and B

V: interaction between a and A or b and B

1.2 Plane Wave Approximation

Assume that the relative motions are described by the plane wave

$$\phi_i = e^{i \boldsymbol{k}_i \cdot \boldsymbol{R}_i}, \qquad \phi_f = e^{i \boldsymbol{k}_f \cdot \boldsymbol{R}_f}$$

 \mathbf{R}_i : Relative coordinate between a and A

 \mathbf{R}_f : Relative coordinate between b and B

 \boldsymbol{k}_i : Momentum of the relative motion in the initial channel

 $oldsymbol{k}_f$: Momentum of the relative motion in the final channel

1.3 PWBA

Plane wave approx. + Born approx.

$$T_{fi} = \langle e^{i\mathbf{k}_f \cdot \mathbf{R}_f} \Phi_b \Phi_B | V | \Phi_A \Phi_a e^{i\mathbf{k}_i \cdot \mathbf{R}_i} \rangle$$

2. Fundamental Examples

2.1. Simplest (fundamental) case

Consider a reaction

a, a': structureless point particle

Interaction

Sum of the two-body interaction

$$V = \sum_{k \in A} V(\boldsymbol{r}_0 - \boldsymbol{r}_k)$$

Its Fourier transform

$$V(\boldsymbol{r}_0 - \boldsymbol{r}_k) = \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \ \tilde{V}(\boldsymbol{p}) \ \mathrm{e}^{\mathrm{i}\boldsymbol{p}\cdot(\boldsymbol{r}_0 - \boldsymbol{r}_k)}$$

• Wave functions of the relative motion

$$\phi_i = e^{i \boldsymbol{k}_i \cdot \boldsymbol{r}_0}, \qquad \phi_f = e^{i \boldsymbol{k}_f \cdot \boldsymbol{r}_0}$$

Calculation of the T-matrix

$$T_{fi} = \langle \phi_f \Phi_B | V | \Phi_A \phi_i \rangle$$

$$= \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \tilde{V}(\mathbf{p})$$

$$\times \int d^3 \mathbf{r}_0 e^{-i\mathbf{k}_f \cdot \mathbf{r}_0} e^{i\mathbf{p} \cdot \mathbf{r}_0} e^{i\mathbf{k}_i \cdot \mathbf{r}_0}$$

$$\times \langle \Phi_B | \sum_k e^{-i\mathbf{p} \cdot \mathbf{r}_k} | \Phi_A \rangle$$

$$= \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \tilde{V}(\mathbf{p}) (2\pi)^3 \delta(\mathbf{k}_i + \mathbf{p} - \mathbf{k}_f)$$

$$\times \langle \Phi_B | \sum_k e^{-i\mathbf{p} \cdot (\mathbf{r}_k)} | \Phi_A \rangle$$

$$= \tilde{V}(\mathbf{q}^*) \langle \Phi_B | \sum_k e^{-i\mathbf{q}^* \cdot \mathbf{r}_k} | \Phi_A \rangle$$

with Momentum Transfer

$$oldsymbol{q}^* = oldsymbol{k}_f - oldsymbol{k}_i$$

Density operator

We define the density operator

$$\rho(\mathbf{r}) = \sum_{k=1}^{A} \delta(\mathbf{r} - \mathbf{r}_k) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \tilde{\rho}(\mathbf{p}) e^{i\mathbf{p} \cdot \mathbf{r}}$$

then

$$\tilde{\rho}(\boldsymbol{p}) = \int d^3 \boldsymbol{r} \rho(\boldsymbol{r}) e^{-i\boldsymbol{p}\cdot\boldsymbol{r}} = \sum_{k=1}^A e^{-i\boldsymbol{p}\cdot\boldsymbol{r}_k}$$

Transition form factor

We define the transition form factor

$$F_{BA}(\boldsymbol{q}^*) \equiv \langle \Phi_B | \sum_k e^{-i\boldsymbol{q}^* \cdot \boldsymbol{r}_k} | \Phi_A \rangle$$
$$= \langle \Phi_B | \tilde{\rho}(\boldsymbol{q}^*) | \Phi_A \rangle$$

• T-matrix

$$T_{fi} = \tilde{V}(\boldsymbol{q}^*) F_{BA}(\boldsymbol{q}^*)$$

Differential cross section

$$\frac{d\sigma}{d\Omega} = K |V(\mathbf{q}^*)|^2 |F_{A^*A}(\mathbf{q}^*)|^2$$
reaction structure
part part

- O The reaction part and the structure part are factorized!
- O Determined only by

 the momentum transfer q^* except for the kinematical factor

$$K = \frac{\mu_i \mu_f}{(2\pi)^2} \frac{k_f}{k_i}$$

[Comment 1]

Note the relation $q^* \Leftrightarrow \theta$

$$q^* = |\mathbf{q}^*| = \sqrt{k_i^2 + k_f^2 - 2k_i k_f \cos \theta}$$

We can easily guess the angular distribution.

[Comment 2]

Note the restriction!

$$\sum_{k=1}^{A} \boldsymbol{r}_k = 0$$

Exactly speaking $\rho(\mathbf{r})$ is not a one-body operator.

Forget for a while! We will touch later

2.2 Cases with spin and isospin

Consider a reaction

 μ_i, μ_f : z-component of the nucleon spin

2.2.1 Isospin operators

(Pauli) isospin matrices of the nucleon $\boldsymbol{\tau}$

$$au \longleftarrow \sigma$$

Isospin operators

$$oldsymbol{t} = rac{1}{2} oldsymbol{ au}$$

Isospin raising and lowering operators

$$t^{+} = t_{x} + it_{y} = \frac{1}{2}(\tau_{x} + i\tau_{y}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$t^{-} = t_x - it_y = \frac{1}{2}(\tau_x - i\tau_y) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Convention in nuclear physics

$$\tau_z|n\rangle = |n\rangle, \quad \tau_z|p\rangle = -|p\rangle$$

$$|n\rangle = t^+|p\rangle, \quad |p\rangle = t^-|n\rangle$$

2.2.2 Case 1

Interaction

$$V = \sum_{k} (\boldsymbol{\tau}_{0} \cdot \boldsymbol{\tau}_{k}) (\boldsymbol{\sigma}_{0} \cdot \boldsymbol{\sigma}_{k}) V_{\tau\sigma} (\boldsymbol{r}_{0} - \boldsymbol{r}_{k})$$

$$= \sum_{k} (\boldsymbol{\tau}_{0} \cdot \boldsymbol{\tau}_{k}) (\boldsymbol{\sigma}_{0} \cdot \boldsymbol{\sigma}_{k})$$

$$\times \int \tilde{V}_{\tau\sigma}(\boldsymbol{p}) e^{i\boldsymbol{p}\cdot(\boldsymbol{r}_{0}-\boldsymbol{r}_{k})} \frac{d^{3}\boldsymbol{p}}{(2\pi)^{3}}$$

• T-matrix

$$T_{fi} = \tilde{V}_{\tau\sigma}(\boldsymbol{q}^*) \langle \mu_f, n | \boldsymbol{\tau}_0 \boldsymbol{\sigma}_0 | \mu_i, p \rangle$$
$$\cdot \langle \Phi_B | \sum_k \boldsymbol{\tau}_k \boldsymbol{\sigma}_k e^{-i\boldsymbol{q}^* \cdot \boldsymbol{r}_k} | \Phi_A \rangle$$

Calculation of the isospin part

$$au_0 \cdot au_k = t_0^+ t_k^- + t_0^- t_k^+ + au_{z,0} au_{z,k}$$

thus

$$\langle n|\boldsymbol{\tau}_0\cdot\boldsymbol{\tau}_k|p\rangle=t_k^-$$

The T-matrix is now written as

$$T_{fi} = \tilde{V}_{\tau\sigma}(\boldsymbol{q}^*) \langle \mu_f | \boldsymbol{\sigma}_0 | \mu_i \rangle$$

$$\cdot \langle \Phi_B | \sum_k t_k^- \boldsymbol{\sigma}_k e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_k} | \Phi_A \rangle$$

$$= \tilde{V}_{\tau\sigma}(\boldsymbol{q}^*) \sum_a [\sigma_{a,0}]_{\mu_f,\mu_i} F_{BA}^{(-,a)}(\boldsymbol{q}^*)$$

where (a = x, y, z) and

$$F_{BA}^{(-,a)}(\boldsymbol{q}) = \langle \Phi_B | \sum_k t_k^- \sigma_{a,k} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_k} | \Phi_A \rangle$$

Calculation of the differential cross section

$$\frac{d\sigma}{d\Omega} = K |\tilde{V}_{\tau\sigma}(\boldsymbol{q}^*)|^2
\times \sum_{\mu_f} \frac{1}{2} \sum_{\mu_i} \sum_{ab} \langle \mu_f | \sigma_{a,0} | \mu_i \rangle^* \langle \mu_f | \sigma_{b,0} | \mu_i \rangle
\times \langle \Phi_B | \sum_k t_k^- \sigma_{a,k} e^{-i\boldsymbol{q}^* \cdot \boldsymbol{r}_k} | \Phi_A \rangle^*
\times \langle \Phi_B | \sum_k t_k^- \sigma_{b,k} e^{-i\boldsymbol{q}^* \cdot \boldsymbol{r}_k} | \Phi_A \rangle
= K |\tilde{V}_{\tau\sigma}(\boldsymbol{q}^*)|^2 \frac{1}{2} \sum_{ab} \operatorname{Tr} [\sigma_a \sigma_b]
\times \langle \Phi_B | \sum_k t_k^- \sigma_{a,k} e^{-i\boldsymbol{q}^* \cdot \boldsymbol{r}_k} | \Phi_A \rangle^*
\times \langle \Phi_B | \sum_k t_k^- \sigma_{b,k} e^{-i\boldsymbol{q}^* \cdot \boldsymbol{r}_k} | \Phi_A \rangle
= K |\tilde{V}_{\tau\sigma}(\boldsymbol{q}^*)|^2
\times \sum_a |\langle \Phi_B | \sum_k t_k^- \sigma_{a,k} e^{-i\boldsymbol{q}^* \cdot \boldsymbol{r}_k} | \Phi_A \rangle|^2$$

Summing up the calculation, we get

• T-matrix

$$T_{fi} = \tilde{V}_{\tau\sigma}(\boldsymbol{q}^*) \sum_{a} [\sigma_a]_{\mu_f,\mu_i} F_{BA}^{(-,a)}(\boldsymbol{q}^*)$$

• Isovector (IV) spin-vector (SV) transition form factor

$$F_{BA}^{(\pm,a)}(\boldsymbol{q}^*) = \langle \Phi_B | \tilde{\rho}_a^{(\pm)}(\boldsymbol{q}^*) | \Phi_A \rangle$$

• IV-SV transition density

$$\tilde{\rho}_a^{(\pm)}(\boldsymbol{q}) = \sum_k t_k^{\pm} \sigma_{a,k} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_k}$$

• Differential cross section

$$\frac{d\sigma}{d\Omega} = K |\tilde{V}_{\tau\sigma}(\boldsymbol{q}^*)|^2 \sum_{a} |F_{BA}^{(-,a)}(\boldsymbol{q}^*)|^2$$

The reaction part and the structure part are factorized again!

2.2.3 Case 2

Interaction

$$V = \sum_{k} (\boldsymbol{\tau}_0 \cdot \boldsymbol{\tau}_k) V_{\tau}(\boldsymbol{r}_0 - \boldsymbol{r}_k) + \sum_{k} (\boldsymbol{\tau}_0 \cdot \boldsymbol{\tau}_k) (\boldsymbol{\sigma}_0 \cdot \boldsymbol{\sigma}_k) V_{\tau\sigma}(\boldsymbol{r}_0 - \boldsymbol{r}_k)$$

T-matrix

$$T_{fi} = \tilde{V}_{\tau}(\boldsymbol{q}^*) \, \delta_{\mu_f, \mu_i} F_{BA}^{(-)}(\boldsymbol{q}^*)$$

$$+ \tilde{V}_{\tau\sigma}(\boldsymbol{q}^*) \, \sum_{a} \left[\sigma_a \right]_{\mu_f, \mu_i} F_{BA}^{(-,a)}(\boldsymbol{q}^*)$$

 Isovector (IV) spin-scalar (SS) transition form factor

$$F_{BA}^{(\pm)}(\boldsymbol{q}) = \langle \Phi_B | \tilde{\rho}^{\pm}(\boldsymbol{q}) | \Phi_A \rangle$$

IV-SS transition density

$$\tilde{\rho}^{\pm}(\boldsymbol{q}) = \sum_{k} t_{k}^{\pm} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_{k}}$$

How about the interference between the IV-SS and IV-SV parts?

Interference term
$$\propto \sum_{\mu_f} \frac{1}{2} \sum_{\mu_i} \delta_{\mu_f, \mu_i} [\sigma_a]_{\mu_f, \mu_i} \cdots$$

= $\frac{1}{2} \text{Tr}[\sigma_a] \cdots = 0$

The sum of the spin z-components $\frac{1}{2} \sum_{\mu_f} \sum_{\mu_i}$ is crucial to cut the interference term.

This is a characteristic of PWBA!

Differential cross section

$$\frac{d\sigma}{d\Omega} = \frac{\mu_i \mu_f}{(2\pi)^2} \frac{k_f}{k_i} \left\{ |\tilde{V}_{\tau}(\boldsymbol{q}^*)|^2 |F_{BA}^{(-)}(\boldsymbol{q}^*)|^2 + |\tilde{V}_{\tau\sigma}(\boldsymbol{q}^*)|^2 \sum_{a} |F_{BA}^{(-),a}(\boldsymbol{q}^*)|^2 \right\}$$

2.2.4. Special case $(q^* = 0)$

At $q^* = 0$, the structure parts become

(1) Transition strength to the Isobaric Analogue State (IAS)

$$B(IAS^{\pm}: A \to B) = |\langle \Phi_B | \sum_k t_k^{\pm} | \Phi_A \rangle|^2$$
$$= |F_{BA}^{(\pm)}(\boldsymbol{q}^* = 0)|^2$$

(2) Gamow-Teller (GT) transition strength

$$B(GT^{\pm}: A \to B) = \sum_{a} |\langle \Phi_{B} | \sum_{k} t_{k}^{-} \sigma_{a,k} | \Phi_{A} \rangle|^{2}$$
$$= \sum_{a} |F_{BA}^{(\pm,a)}(\boldsymbol{q}^{*} = 0)|^{2}$$

- O These are the key examples to extract structure information from reactions.
- O But can we get the form factors at $\mathbf{q}^* = 0$?

 Unfortunately No! in general.

 We need tricks.

2.3 Reaction of composite particles

Interaction

$$V = \sum_{j \in a} \sum_{k \in A} V(\mathbf{r}_j - \mathbf{r}_k)$$

$$= \sum_{j \in a} \sum_{k \in A} \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \tilde{V}(\mathbf{p}) e^{i\mathbf{p}\cdot(\mathbf{r}'_j + \mathbf{R} - \mathbf{r}_k)}$$

Take coordinates

$$oldsymbol{r}_j = oldsymbol{r}_j' + oldsymbol{R}_j'$$

Plane waves of the relative motion

$$\phi_i = e^{i \boldsymbol{k}_i \cdot \boldsymbol{R}}, \qquad \phi_f = e^{i \boldsymbol{k}_f \cdot \boldsymbol{R}}$$

Carry out the integration over \mathbf{R} , we get

$$T_{fi} = \tilde{V}(\boldsymbol{q}^*) \langle \Phi_b | \sum_{j \in a} e^{i\boldsymbol{q}^* \cdot \boldsymbol{r}_j'} | \Phi_a \rangle$$

$$\times \langle \Phi_B | \sum_{k \in A} e^{-i\boldsymbol{q}^* \cdot \boldsymbol{r}_k} | \Phi_A \rangle$$

We reach the formulas

• T-matrix

$$T_{fi} = \tilde{V}(\boldsymbol{q}^*) F_{ba}(-\boldsymbol{q}^*) F_{BA}(\boldsymbol{q}^*)$$

Transition form factors

$$F_{ba}(\mathbf{q}) = \langle \Phi_b | \sum_{j \in a} e^{-i\mathbf{q} \cdot \mathbf{r}'_j} | \Phi_a \rangle$$
$$F_{BA}(\mathbf{q}) = \langle \Phi_B | \sum_{k \in A} e^{-i\mathbf{q} \cdot \mathbf{r}_k} | \Phi_A \rangle$$

Ddifferential cross section

$$\frac{d\sigma}{d\Omega} = \frac{\mu_i \mu_f}{(2\pi)^2} \frac{k_f}{k_i} |\tilde{V}(\boldsymbol{q}^*)|^2 \qquad \text{(reaction part)}$$

$$\times |F_{ba}(-\boldsymbol{q}^*)|^2 |F_{BA}(\boldsymbol{q}^*)|^2 \qquad \text{(structure part)}$$

2.4 Rearrangement collision

Consider a reaction

Assume

- A is inert core.
- Neglect the spins
- Interaction

$$V = V_{pn}(\boldsymbol{r}_p - \boldsymbol{r}_n)$$

Use the coordinates

$$\boldsymbol{r} = \boldsymbol{r}_p - \boldsymbol{r}_n, \qquad \boldsymbol{R} = \frac{\boldsymbol{r}_p + \boldsymbol{r}_n}{2}$$

Wave functions

$$\phi_i = e^{i \boldsymbol{k}_i \cdot \boldsymbol{R}}, \qquad \phi_f = e^{i \boldsymbol{k}_f \cdot \boldsymbol{r}_p}$$

$$\Phi_a = \phi_d(\boldsymbol{r}), \qquad \Phi_B = \Phi_A \psi_n(\boldsymbol{r}_n)$$

T-matrix

$$T_{fi} = \int d^3 \mathbf{r}_p \int d^3 \mathbf{r}_n \left\{ e^{-i\mathbf{k}_f \cdot \mathbf{r}_p} \ \psi_n^*(\mathbf{r}_n) \right\}$$

$$\times V_{pn}(\mathbf{r}) \left\{ \phi_d(\mathbf{r}) e^{i\mathbf{k}_i \cdot \mathbf{R}} \right\}$$

Fourier transform $V_{pn}(\mathbf{r})\phi_d(\mathbf{r})$

$$V_{pn}(\boldsymbol{r})\phi_d(\boldsymbol{r}) = \int \frac{d^3\boldsymbol{p}}{(2\pi)^3} D(\boldsymbol{p}) e^{i\boldsymbol{p}\cdot\boldsymbol{r}}$$

The T-matrix becomes

$$T_{fi} = \int d^{3}\boldsymbol{r}_{p} \int d^{3}\boldsymbol{r}_{n} \int \frac{d^{3}\boldsymbol{p}}{(2\pi)^{3}} D(\boldsymbol{p})$$

$$\times e^{-i\boldsymbol{k}_{f}\cdot\boldsymbol{r}_{p}} \psi_{n}^{*}(\boldsymbol{r}_{n}) e^{i\boldsymbol{p}\cdot\boldsymbol{r}} e^{i\boldsymbol{k}_{i}\cdot\boldsymbol{R}}$$

$$= \int d^{3}\boldsymbol{r}_{p} \int d^{3}\boldsymbol{r}_{n} \int \frac{d^{3}\boldsymbol{p}}{(2\pi)^{3}} D(\boldsymbol{p})$$

$$\times e^{-i\boldsymbol{k}_{f}\cdot\boldsymbol{r}_{p}} \psi_{n}^{*}(\boldsymbol{r}_{n}) e^{i\boldsymbol{p}\cdot(\boldsymbol{r}_{p}-\boldsymbol{r}_{n})} e^{i\boldsymbol{k}_{i}\cdot(\boldsymbol{r}_{p}+\boldsymbol{r}_{n})/2}$$

$$= D\left(\boldsymbol{k}_{f} - \frac{\boldsymbol{k}_{i}}{2}\right) \int d^{3}\boldsymbol{r}_{n} \psi_{n}^{*}(\boldsymbol{r}_{n}) e^{-i(\boldsymbol{k}_{f}-\boldsymbol{k}_{i})\cdot\boldsymbol{r}_{n}}$$

$$= D\left(\boldsymbol{k}_{f} - \frac{\boldsymbol{k}_{i}}{2}\right) \psi_{n}^{*}(-\boldsymbol{q}^{*})$$

Differential cross section

$$\frac{d\sigma}{d\Omega} = K \left| D \left(\mathbf{k}_f - \frac{\mathbf{k}_i}{2} \right) \right|^2 \left| \psi_n(-\mathbf{q}^*) \right|^2$$

O We may get information about the neutron wave function in B.

[Comment 1]

Zero range approximation

Has been widely used for (d, p) reaction

$$V_{pn}(\mathbf{r})\phi_d(\mathbf{r}) = D_0\delta(\mathbf{r})$$

means

$$D(\mathbf{p}) = D_0$$

Then

$$\frac{d\sigma}{d\Omega} = K D_0^2 |\psi_n(-\boldsymbol{q})|^2$$

[Just for fun]

Schrödinger equation for the deuteron

$$\left(-\frac{\boldsymbol{\nabla}_{\boldsymbol{r}}^2}{m_N} + V(\boldsymbol{r})\right)\phi_d(\boldsymbol{r}) = -\epsilon_d\phi_d(\boldsymbol{r})$$

 ϵ_d : Binding energy of the deuteron

Fourier transform of $V(\mathbf{r})\phi(\mathbf{r})$

$$D(\mathbf{p}) = \int d^3 \mathbf{r} V(\mathbf{r}) \phi_d(\mathbf{r}) e^{-i\mathbf{p}\cdot\mathbf{r}}$$

$$= \int d^3 \mathbf{r} \left(\frac{\nabla_{\mathbf{r}}^2}{m_N} - \epsilon_d \right) \phi_d(\mathbf{r}) e^{-i\mathbf{p}\cdot\mathbf{r}}$$

$$= -\left(\frac{\mathbf{p}^2}{m_N} + \epsilon_d \right) \phi_d(\mathbf{p})$$

2.5 Exchange processes

2.5.1. NN scattering

Consider a nucleon-nucleon (NN) scattering

$$p + p \rightarrow p + p$$

NN scattering t-matrix

$$t_{NN} = t_{NN}^D - t_{NN}^E$$

We cannot distinguish p_0 and p_1

Ignore spin and isospin for simplicity. Just learn the essence.

(1) Direct process

$$t_{NN}^{D} = \langle e^{i\boldsymbol{k}_{f}\cdot\boldsymbol{r}_{0}}e^{-i\boldsymbol{k}_{f}\cdot\boldsymbol{r}_{1}}|V(\boldsymbol{r}_{0}-\boldsymbol{r}_{1})|e^{i\boldsymbol{k}_{i}\cdot\boldsymbol{r}_{0}}e^{-i\boldsymbol{k}_{i}\cdot\boldsymbol{r}_{1}}\rangle$$
$$= \tilde{V}(\boldsymbol{q}^{*})$$

(2) Exchange process

$$t_{NN}^{E} = \langle e^{i\boldsymbol{k}_{f}\cdot\boldsymbol{r}_{1}}e^{-i\boldsymbol{k}_{f}\cdot\boldsymbol{r}_{0}}|V(\boldsymbol{r}_{0}-\boldsymbol{r}_{1})|e^{i\boldsymbol{k}_{i}\cdot\boldsymbol{r}_{0}}e^{-i\boldsymbol{k}_{i}\cdot\boldsymbol{r}_{1}}\rangle$$
$$= \tilde{V}(\boldsymbol{Q}^{*})$$

with

$$\boldsymbol{Q}^* = -(\boldsymbol{k}_f + \boldsymbol{k}_i) = -(2\boldsymbol{k}_i + \boldsymbol{q})$$

Pseudo-potential approximation

High energy forward scattering

$$q^* \ll 2k_i$$

We may use an approximation

$$t_{NN}^E = \tilde{V}(\boldsymbol{Q}^*) \approx \tilde{V}(-2\boldsymbol{k}_i)$$

 $\tilde{V}(-2\mathbf{k}_i)$: a constant with respect to \mathbf{q}^* , determined by the initial state

Now we can calculate the full t_{NN} by only the direct term of the potential

$$V = V(\boldsymbol{r}_0 - \boldsymbol{r}_1) - V_0 \delta(\boldsymbol{r}_0 - \boldsymbol{r}_1)$$

where

$$V_0 = \tilde{V}(-2\boldsymbol{k}_i)$$

The 2nd term: **Pseudo-potential**

- O This prescription is very useful to represent the exchange effects by the direct processes via a local potential!
- O In realistic cases, we must consider
 - spins, isospins
 - tensor forces
- velocity dependent forces etc.

2.5.2. Nucleon-nucleus scattering (NA scattering)

Consider the exchange process in

$$A(p, p')A^*$$

Ignore spin and isospin.

Initial state

$$|i\rangle = \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} (\boldsymbol{p}|\Phi_A) e^{i\boldsymbol{p}\cdot\boldsymbol{r}_k} e^{i\boldsymbol{k}_i\cdot\boldsymbol{r}_0}$$

Final state

$$|f\rangle = \int \frac{d^3 \mathbf{p}'}{(2\pi)^3} (\mathbf{p}' |\Phi_{A^*}\rangle e^{i\mathbf{p}' \cdot \mathbf{r}_0} e^{i\mathbf{k}_f \cdot \mathbf{r}_k}$$

Interaction

$$V(\boldsymbol{r}_0 - \boldsymbol{r}_k) = \int \frac{d^3 \boldsymbol{p}}{(2\pi)^3} \tilde{V}(\boldsymbol{p}) e^{i\boldsymbol{p}\cdot(\boldsymbol{r}_0 - \boldsymbol{r}_k)}$$

Use the momentum conservation at each vertex.

T-matrix for the exchange process is now written as

$$T_{fi}^{E} = -\langle f|V(\boldsymbol{r}_{0} - \boldsymbol{r}_{k})|i\rangle$$

$$= -\int \frac{d^{3}\boldsymbol{p}}{(2\pi)^{3}} \langle \phi_{A}^{*}|\boldsymbol{p} - \boldsymbol{q}^{*})\tilde{V}(\boldsymbol{p} - \boldsymbol{q}^{*} - \boldsymbol{k}_{i})(\boldsymbol{p}|\phi_{A}\rangle$$

Noting

$$p, p' \leq k_F \approx 1.4 \text{ fm}^{-1}$$

Momentum of 300MeV proton

$$k = \sqrt{E_p^2 - m_p^2} = 808 \text{ MeV} \approx 4.0 \text{ fm}^{-1}$$

We may take an approximation

$$\tilde{V}(\boldsymbol{p}-\boldsymbol{q}^*-\boldsymbol{k}_i)=\tilde{V}(\boldsymbol{p}'-\boldsymbol{k}_i)\approx \tilde{V}(-\boldsymbol{k}_i)$$

which is a constant for the given k_i .

Now the T-matrix for the exchange process becomes

$$T_{fi}^{E} = -\tilde{V}(-\boldsymbol{k}_{i}) \int \frac{d^{3}\boldsymbol{p}}{(2\pi)^{3}} \langle \phi_{A}^{*} | \boldsymbol{p} - \boldsymbol{q}^{*}) (\boldsymbol{p} | \phi_{A} \rangle$$

$$= -\tilde{V}(-\boldsymbol{k}_{i}) \langle \phi_{A^{*}} | \sum_{k} e^{-i\boldsymbol{q}^{*} \cdot \boldsymbol{r}_{k}} | \phi_{A} \rangle$$

$$= -\tilde{V}(-\boldsymbol{k}_{i}) F_{A^{*}A}(\boldsymbol{q}^{*})$$

Use the interaction with pseudo-potential

$$V = V(\boldsymbol{r}_0 - \boldsymbol{r}_1) - \tilde{V}(-\boldsymbol{k}_i)\delta(\boldsymbol{r}_0 - \boldsymbol{r}_1)$$

and calculate only the direct term.

We get the full T-matrix as

$$T_{fi} = \left[\tilde{V}(\boldsymbol{q}*) - \tilde{V}(-\boldsymbol{k}_i)\right] F_{A*A}(\boldsymbol{q}^*)$$

In this approximation

$$T_{fi} \propto F_{A*A}(\boldsymbol{q}^*)$$

Very useful!

[Comment]

- k_i in the previous subsection is the incident momentum in the cm frame of the NN system,
- \mathbf{k}_i here is the incident momentum in the cm frame of the NA system

Note

$$2k_i^{\rm NN} = k_i^{\rm NA} \approx k_{i,{\rm lab}}$$
 for $m_A \to \infty$

For a central potential

$$\tilde{V}(\boldsymbol{p}) = \tilde{V}(p)$$

Thus we can set

$$\tilde{V}(-2\boldsymbol{k}_{i}^{NN})) = \tilde{V}(2k_{i}^{NN})$$

$$\approx \tilde{V}(-\boldsymbol{k}_{i}^{NA}) = \tilde{V}(k_{i}^{NA})$$

$$\approx \tilde{V}(k_{i,\text{lab}})$$

IV PWBA II

Reaction to Continuum

1. Simplest reaction

Consider the reaction

Simplifications

- · Ignore spins, isospins, Pauli principle,
- $\cdot \quad m_p = m_n = m_N$
- · Consider only the inclusive cross section

1.1. Formalism

Use the coordinate system

$$\mathbf{r}_0 + \mathbf{r}_1 + \mathbf{r}_2 = 0$$
 $\mathbf{r}_0 - \frac{\mathbf{r}_1 + \mathbf{r}_2}{2} = \mathbf{R}$
 $\mathbf{r}_1 - \mathbf{r}_2 = \mathbf{r}$

Final state momenta $(\boldsymbol{p}_0, \ \boldsymbol{p}_1, \ \boldsymbol{p}_2)$

$$egin{aligned} oldsymbol{p}_0 &= oldsymbol{k}_f \ oldsymbol{P}_{ ext{res}} &= oldsymbol{p}_1 + oldsymbol{p}_2 &= -oldsymbol{k}_f, \ oldsymbol{p}_1 &= oldsymbol{p}_2 &= oldsymbol{\kappa} \end{aligned}$$

Initial state

$$|i\rangle = \phi_d(\mathbf{r}) e^{\mathrm{i}\mathbf{k}_i \cdot \mathbf{R}}$$

Final state

$$|f\rangle = e^{i \boldsymbol{k}_f \cdot \boldsymbol{R}} \phi_{pp}(\boldsymbol{\kappa}; \boldsymbol{r})$$

Asymptotic form

$$\phi_{pp}(\boldsymbol{\kappa}; \boldsymbol{r}) \sim e^{i\boldsymbol{\kappa}\cdot\boldsymbol{r}}$$

 ϕ_d : deuteron wave function

 ϕ_{pp} : wave function of the final pp system

Interaction

$$V(\mathbf{r}_0 - \mathbf{r}_1) = \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \tilde{V}_{pn}(\mathbf{p}) e^{i\mathbf{p}\cdot(\mathbf{r}_0 - \mathbf{r}_1)}$$
$$= \int \frac{d^3 \mathbf{p}}{(2\pi)^3} \tilde{V}_{pn}(\mathbf{p}) e^{i\mathbf{p}\cdot(\mathbf{R} - \frac{1}{2}\mathbf{r})}$$

• T-matrix

$$T_{fi} = \langle f|V|i\rangle$$

$$= \tilde{V}(\boldsymbol{q}^*) \int d^3 \boldsymbol{r} \phi_{pp}^*(\boldsymbol{\kappa}; \boldsymbol{r}) \phi_d(\boldsymbol{r}) e^{-i\frac{\boldsymbol{q}^*}{2} \cdot \boldsymbol{r}}$$

$$= \tilde{V}(\boldsymbol{q}^*) F_{pp,d}(\boldsymbol{\kappa}; \frac{\boldsymbol{q}^*}{2})$$

Transition form factor

$$F_{pp,d}(\boldsymbol{\kappa};\boldsymbol{q}) = \int d^3 \boldsymbol{r} \phi_{pp}^*(\boldsymbol{\kappa};\boldsymbol{r}) \phi_d(\boldsymbol{r}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}}$$

• Momentum transfer to the internal motion

$$q = \frac{q^*}{2}$$

[Comment]

On the center of mass problem

Why differs

$$\langle \phi_{pp} | e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} | \phi_d \rangle$$
 vs. $\langle \phi_{pp} | e^{-i\boldsymbol{q}^*\cdot\boldsymbol{r}_1} | \phi_d \rangle$

We must take the replacement

$$\boldsymbol{r}_1 \longrightarrow \boldsymbol{r}_1 - \frac{\boldsymbol{r}_1 + \boldsymbol{r}_2}{2} = \frac{\boldsymbol{r}}{2}$$

then we get

$$e^{-i\boldsymbol{q}^*\cdot\boldsymbol{r}_1} \longrightarrow e^{-i\boldsymbol{q}^*\cdot\frac{\boldsymbol{r}}{2}} = e^{-i\boldsymbol{q}\cdot\boldsymbol{r}}, \quad (\boldsymbol{q} = \frac{\boldsymbol{q}^*}{2})$$

• Inclusive cross section

$$\frac{d^2\sigma}{d\omega^*d\Omega} = K|\tilde{V}(\boldsymbol{q}^*)|^2
\times \int \frac{d^3\boldsymbol{\kappa}}{(2\pi)^3} |F_{pp,d}(\boldsymbol{\kappa}; \frac{\boldsymbol{q}^*}{2})|^2 \delta(\omega^* - \bar{\omega}^*)$$

where

$$\bar{\omega}^* = \frac{m_p^2 - m_d^2 - m_n^2 + M_{pp}^2}{2\sqrt{s}}$$

with the invariant mass of the pp system

$$M_{pp}^2 = (E_1^* + E_2^*)^2 - k_f^2$$

Excitation Energy

Assume

Invariant mass = Mass + Internal energy we may write

$$M_{pp} = 2m_p + \frac{\kappa^2}{m_p} = m_d + E_x$$

 E_x : Excitation energy of the 2N system (with respect to the target ground state)

Then we get

$$\bar{\omega}^* = \frac{m_p^2 - m_d^2 - m_n^2 + m_d^2 + 2m_d E_x + E_x^2}{2\sqrt{s}}$$

$$\approx \frac{m_d}{\sqrt{s}} E_x$$

Introduce

$$\omega = \frac{\sqrt{s}}{m_d} \omega^*$$

which means

Energy transfer to the internal motion

• Double differential cross section

$$\frac{d^2\sigma}{d\omega^*d\Omega} = K \frac{\sqrt{s}}{m_d} |\tilde{V}_{(\mathbf{q}^*)}|^2
\times \int \frac{d^3\mathbf{\kappa}}{(2\pi)^3} |F_{pp,d}(\mathbf{\kappa}; \mathbf{q})|^2 \delta(\omega - E_x)$$

with

$$E_x = 2m_p - m_d + \frac{\kappa^2}{m_p}$$

With spins, isospins, antisymmetrization, etc., the formula is more complicate.

See A. Itabashi, K. Aizawa, and M. Ichimura,

Prog. Theoret. Phys, **91** 91(1994)

1.2. Practical calculation

- (1) Fix ω^* , then $\Longrightarrow \omega \Longrightarrow E_x \Longrightarrow \bar{\kappa}$
- (2) Solve the Schrödinger equations
 - for the deuteron

$$H_{2N}\phi_d(\mathbf{r}) = (2m_N - \epsilon_d)\phi_d(\mathbf{r})$$

• for the pp system

$$H_{2N}\phi_{pp}^*(\bar{\boldsymbol{\kappa}};\boldsymbol{r}) = (2m_N + \frac{\kappa^2}{m_p})\phi_{pp}^*(\boldsymbol{\kappa};\boldsymbol{r})$$

for low partial waves $(\ell \leq 2)$.

Use the plane wave for higher partial waves

(3) Calculate the form factor

$$F_{pp,d}(\boldsymbol{\kappa};\boldsymbol{q}) = \int d^3 \boldsymbol{r} \phi_{pp}^*(\boldsymbol{\kappa};\boldsymbol{r}) \phi_d(\boldsymbol{r}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}}$$

by the partial wave expansion.

 \boxtimes 1 Cross sections and polarization observables D_i of the ${}^2{\rm H}(p,n)$ reaction at $T_p=345$ MeV. T. Wakasa et al., Phys. Rev. C69 (2004) 044602

2. Response function formalism

The above method works for very limited cases, such as a few nucleon target d, 3 He.

Let's consider a method applicable for more general cases.

$$A + N \longrightarrow N' + X$$
 (anything)

 n_r : number of outgoing clusters in the residual system X.

Take only the direct term (treat the exchange term by the pseudo-potential.)

T-matrix is given by

$$T_{fi} = \tilde{V}(\boldsymbol{q}^*) \langle \Phi_X | \tilde{\rho}(\boldsymbol{q}^*) | \Phi_A \rangle$$

with the transition density

$$\tilde{\rho}((\boldsymbol{p}) = \sum_{k=1}^{A} e^{-i\boldsymbol{p}\cdot\boldsymbol{r}_k}$$

X represents

$$X=(n_r,\boldsymbol{p}_1,\cdots\boldsymbol{p}_{n_r},\alpha)$$

and
$$f = (k', X)$$

 α : the quantum number other than

$$(n_r, \boldsymbol{p}_1, \cdots \boldsymbol{p}_{n_r})$$

Use the notation Σ_X , which means

$$\sum_{X} = \sum_{n_r,\alpha} \int \frac{d^3 \boldsymbol{p}_1^*}{(2\pi)^3} \cdots \frac{d^3 \boldsymbol{p}_{n_r}^*}{(2\pi)^3} (2\pi)^3 \delta \left(\boldsymbol{k}' + \sum_{k=1}^{n_r} \boldsymbol{p}_k^* \right)$$

Inclusive double differential cross section is now given by

$$\frac{d^2\sigma}{d\omega^*d\Omega} = K \sum_{X} |T_{fi}|^2 \delta(\omega^* - \bar{\omega}^*)$$

where

$$\bar{\omega}^* = \frac{m_N^2 - m_A^2 - m_{N'}^2 + M_X^2}{2\sqrt{s}}$$

 M_X : invariant mass of the system X.

Write

$$M_X = m_A + E_x^X$$

 E_x^X : Excitation energy of the system X with respect to the target ground state.

$$\bar{\omega}^* pprox \frac{m_A}{\sqrt{s}} E_x^X$$

We get

Double Differential Cross Section

$$\frac{d^2\sigma}{d\omega^*d\Omega} = K \frac{\sqrt{s}}{m_A} \sum_{X} |T_{fi}|^2 \delta(\omega - E_x^X)$$

with the energy transfer to the internal motion of X

$$\omega = \frac{m_A}{\sqrt{s}} \ \omega^*$$

Rewrite this as

$$\frac{d^2\sigma}{d\omega^*d\Omega} = K \frac{\sqrt{s}}{m_A} |\tilde{V}(\boldsymbol{q}^*)|^2 R_{\rho}(\boldsymbol{q}^*)$$

with **Response function** for ρ

$$R_{\rho}(\omega, \boldsymbol{q}^*) \equiv \sum_{X} |\langle \Phi_X | \tilde{\rho}(\boldsymbol{q}^*) | \Phi_A \rangle|^2 \delta(\omega - E_x^X)$$

- O The structure part $R_{\rho}(\omega, \boldsymbol{q}^*)$ is well separated!
- O The question is how to calculate the infinite sum Σ_X .

A main theme!!!

Introduce

Hamiltonian of the system A(=X)

$$H_A \Phi_X = E_x^X \Phi_X, \quad (E_x^X = 0, \text{ if } X = A)$$

We can express the response function as

$$R_{\rho}(\omega, \boldsymbol{q}^{*})$$

$$= \sum_{X} |\langle \Phi_{X} | \tilde{\rho}(\boldsymbol{q}^{*}) | \Phi_{A} \rangle|^{2} \delta(\omega - E_{x}^{X})$$

$$= -\frac{1}{\pi} \operatorname{Im} \left[\sum_{X} \langle \Phi_{A} | \tilde{\rho}^{\dagger}(\boldsymbol{q}^{*}) | \Phi_{X} \rangle \frac{1}{\omega - E_{x}^{X} + i\eta} \right]$$

$$\times \langle \Phi_{X} | \tilde{\rho}(\boldsymbol{q}^{*}) | \Phi_{A} \rangle$$

$$= -\frac{1}{\pi} \operatorname{Im} \left[\langle \Phi_{A} | \tilde{\rho}^{\dagger}(\boldsymbol{q}^{*}) \frac{1}{\omega - H_{A} + i\eta} \tilde{\rho}(\boldsymbol{q}^{*}) | \Phi_{A} \rangle \right]$$

 Σ_X and Φ_X disappeared!

Can we calculate this response function?

3. Summary

• Inclusive double differential cross section

$$\frac{d^2\sigma}{d\omega^*d\Omega} = K \frac{\sqrt{s}}{m_A} |\tilde{V}(\boldsymbol{q}^*)|^2 R_{\rho}(\omega, \boldsymbol{q}^*)$$

Response function

$$R_{\rho}(\omega, \mathbf{q}) = -\frac{1}{\pi} \operatorname{Im} \langle \Phi_{A} | \tilde{\rho}^{\dagger}(\mathbf{q}) \frac{1}{\omega - H_{A} + i\eta} \tilde{\rho}(\mathbf{q}) | \Phi_{A} \rangle$$

- Key points
- (1) Factorization of the reaction part and the structure part.
- (2) Each part depends only on the momentum transfer q^* as to the spatial degree of freedom.
- (3) The feature (2) is due to the fact that the interaction V is a local operator i.e $V = V(\mathbf{r}_0 \mathbf{r}_k)$.
- (4) To get reliable structure information, we must know the reliable reaction part, especially the interaction V.

- (5) Infinite sum Σ_X is replaced by the expectation value of the target state, i.e. Response function of the one body operator.
- (6) In a certain approximation such as HF, TDA, RPA, etc. these response functions are calculable as will be discussed.

[Caution]

Distinguish the three energy transfers

```
\omega^{\mathrm{lab}} in the lab frame \omega^* in the cm frame \omega to the internal state \omega excitation energy of the residual system, E_x, with respect to the target ground state
```