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III PWBA I

1. PWBA

As the first stage 1

Let’s consider reactions in PWBA

(Plane Wave Born Approximation )

● This is an ideal clean impulse model.

● This may not be realistic, but tells us

fundamental structure of the reactions.

● We can learn what information can be

obtained from the reaction considered.

● This is very important

to design (or analyse) experiments.
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Let’s consider a final two-body reaction

a + A −→ b +B

usually written as

A(a, b)B

1.1 Born Approximation

Assume that the interaction works only once

Tfi = ⟨ϕfΦbΦB|V |ΦAΦaϕi⟩

ΦA : wave function of the particle A

ΦB : wave function of the particle B

Φa : wave function of the particle a

Φb : wave function of the particle b

ϕi : w. f. of the relative motion between a and A

ϕf : w. f. of the relative motion between b and B

V : interaction between a and A or b and B
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1.2 Plane Wave Approximation

Assume that the relative motions are

described by the plane wave

ϕi = eiki·Ri, ϕf = eikf ·Rf

Ri : Relative coordinate between a and A

Rf : Relative coordinate between b and B

ki : Momentum of the relative motion

in the initial channel

kf : Momentum of the relative motion

in the final channel

1.3 PWBA

Plane wave approx. + Born approx.

Tfi = ⟨eikf ·RfΦbΦB|V |ΦAΦaeiki·Ri⟩
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2. Fundamental Examples

2.1. Simplest (fundamental) case

A B

Consider a reaction

A(a, a′)B

a, a′ : structureless point particle
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a A

● Interaction

Sum of the two-body interaction

V =
∑
k∈A

V (r0 − rk)

Its Fourier transform

V (r0 − rk) =
∫ d3p

(2π)3
Ṽ (p) eip·(r0−rk)

● Wave functions of the relative motion

ϕi = eiki·r0, ϕf = eikf ·r0
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● Calculation of the T-matrix

Tfi = ⟨ϕfΦB|V |ΦAϕi⟩

=
∫ d3p

(2π)3
Ṽ (p)

×
∫
d3r0 e

−ikf ·r0eip·r0 eiki·r0

× ⟨ΦB|
∑
k
e−ip·rk|ΦA⟩

=
∫ d3p

(2π)3
Ṽ (p) (2π)3δ(ki + p− kf)

× ⟨ΦB|
∑
k
e−ip·(rk)|ΦA⟩

= Ṽ (q∗) ⟨ΦB|
∑
k
e−iq

∗·rk|ΦA⟩

with Momentum Transfer

q∗ = kf − ki
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● Density operator

We define the density operator

ρ(r) =
A∑
k=1

δ(r − rk) =
∫ d3p

(2π)3
ρ̃(p)eip·r

then

ρ̃(p) =
∫
d3rρ(r)e−ip·r =

A∑
k=1

e−ip·rk

● Transition form factor

We define the transition form factor

FBA(q
∗) ≡ ⟨ΦB|

∑
k
e−iq

∗·rk|ΦA⟩

= ⟨ΦB|ρ̃(q∗)|ΦA⟩

● T-matrix

Tfi = Ṽ (q∗) FBA(q
∗)
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● Differential cross section

dσ

dΩ
= K |V (q∗)|2 |FA∗A(q∗)|2

reaction structure

part part

○ The reaction part and the structure part

are factorized !

○ Determined only by

the momentum transfer q∗

except for the kinematical factor

K =
µiµf
(2π)2

kf
ki
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[Comment 1]

Note the relation q∗ ⇔ θ

q∗ = |q∗| =
√
k2i + k2f − 2kikf cos θ

We can easily guess the angular distribution.

[Comment 2]

Note the restriction !

A∑
k=1

rk = 0

Exactly speaking ρ(r) is not a one-body

operator.

Forget for a while ! We will touch later
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2.2 Cases with spin and isospin

A B

p n

Consider a reaction

A(p, n)B

µi, µf : z-component of the nucleon spin
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2.2.1 Isospin operators

(Pauli) isospin matrices of the nucleon τ

τ ←− σ

Isospin operators

t =
1

2
τ

Isospin raising and lowering operators

t+ = tx + ity =
1

2
(τx + iτy) =

 0 1

0 0



t− = tx − ity =
1

2
(τx − iτy) =

 0 0

1 0



Convention in nuclear physics

τz|n⟩ = |n⟩, τz|p⟩ = −|p⟩

|n⟩ = t+|p⟩, |p⟩ = t−|n⟩
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2.2.2 Case 1

● Interaction

V =
∑
k
(τ0 · τk)(σ0 · σk)Vτσ(r0 − rk)

=
∑
k
(τ0 · τk)(σ0 · σk)

×
∫
Ṽτσ(p) e

ip·(r0−rk) d
3p

(2π)3

● T-matrix

Tfi = Ṽτσ(q
∗) ⟨µf , n|τ0σ0|µi, p⟩

· ⟨ΦB|
∑
k
τkσke

−iq∗·rk|ΦA⟩
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Calculation of the isospin part

τ0 · τk = t+0 t
−
k + t−0 t

+
k + τz,0τz,k

thus

⟨n|τ0 · τk|p⟩ = t−k

The T-matrix is now written as

Tfi = Ṽτσ(q
∗) ⟨µf |σ0|µi⟩

· ⟨ΦB|
∑
k
t−k σke

−iq·rk|ΦA⟩

= Ṽτσ(q
∗)

∑
a
[σa,0]µf ,µiF

(−,a)
BA (q∗)

where (a = x, y, z) and

F
(−,a)
BA (q) = ⟨ΦB|

∑
k
t−k σa,ke

−iq·rk|ΦA⟩
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Calculation of the differential cross section

dσ

dΩ
= K |Ṽτσ(q∗)|2

×∑
µf

1

2

∑
µi

∑
ab
⟨µf |σa,0|µi⟩∗⟨µf |σb,0|µi⟩

× ⟨ΦB|
∑
k
t−k σa,ke

−iq∗·rk|ΦA⟩∗

× ⟨ΦB|
∑
k
t−k σb,ke

−iq∗·rk|ΦA⟩

= K |Ṽτσ(q∗)|2
1

2

∑
ab
Tr [σaσb]

× ⟨ΦB|
∑
k
t−k σa,ke

−iq∗·rk|ΦA⟩∗

× ⟨ΦB|
∑
k
t−k σb,ke

−iq∗·rk|ΦA⟩

= K |Ṽτσ(q∗)|2

×∑
a
|⟨ΦB|

∑
k
t−k σa,ke

−iq∗·rk|ΦA⟩|2
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Summing up the calculation, we get

● T-matrix

Tfi = Ṽτσ(q
∗)

∑
a
[σa]µf ,µi F

(−,a)
BA (q∗)

● Isovector (IV) spin-vector (SV)

transition form factor

F
(±,a)
BA (q∗) = ⟨ΦB|ρ̃(±)a (q∗)|ΦA⟩

● IV-SV transition density

ρ̃(±)a (q) =
∑
k
t±k σa,ke

−iq·rk
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● Differential cross section

dσ

dΩ
= K |Ṽτσ(q∗)|2

∑
a
|F (−,a)

BA (q∗)|2

The reaction part and the structure part are

factorized again !
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2.2.3 Case 2

・ Interaction

V =
∑
k
(τ0 · τk) Vτ (r0 − rk)

+
∑
k
(τ0 · τk)(σ0 · σk) Vτσ(r0 − rk)

・ T-matrix

Tfi = Ṽτ (q
∗) δµf ,µiF

(−)
BA (q

∗)

+ Ṽτσ(q
∗)

∑
a
[σa]µf ,µi F

(−,a)
BA (q∗)

・ Isovector (IV) spin-scalar (SS)

transition form factor

F
(±)
BA (q) = ⟨ΦB|ρ̃±(q)|ΦA⟩

・ IV-SS transition density

ρ̃±(q) =
∑
k
t±k e
−iq·rk
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How about the interference between the

IV-SS and IV-SV parts ?

Interference term ∝
∑
µf

1

2

∑
µi

δµf ,µi
[σa]µf ,µi

· · ·

=
1

2
Tr[σa] · · · = 0

The sum of the spin z-components 1
2

∑
µf

∑
µi

is

crucial to cut the interference term.

This is a characteristic of PWBA !

● Differential cross section

dσ

dΩ
=
µiµf
(2π)2

kf
ki

{
|Ṽτ(q∗)|2 |F (−)

BA (q
∗)|2

+ |Ṽτσ(q∗)|2
∑
a
|F (−),a

BA (q∗)|2
}
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2.2.4. Special case (q∗ = 0)

At q∗ = 0, the structure parts become

(1) Transition strength

to the Isobaric Analogue State (IAS)

B(IAS± : A→ B) = |⟨ΦB|
∑
k
t±k |ΦA⟩|2

= |F (±)
BA (q

∗ = 0)|2

(2) Gamow-Teller (GT) transition strength

B(GT± : A→ B) =
∑
a
|⟨ΦB|

∑
k
t−k σa,k|ΦA⟩|2

=
∑
a
|F (±,a)

BA (q∗ = 0)|2
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○ These are the key examples to extract

structure information from reactions.

○ But can we get the form factors

at q∗ = 0 ?

Unfortunately No ! in general.

We need tricks.
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2.3 Reaction of composite particles

A B

a b

・ Interaction

V =
∑
j∈a

∑
k∈A

V (rj − rk)

=
∑
j∈a

∑
k∈A

∫ d3p

(2π)3
Ṽ (p)eip·(r

′
j+R−rk)
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a A

Take coordinates

rj = r′j +R

Plane waves of the relative motion

ϕi = eiki·R, ϕf = eikf ·R

Carry out the integration over R, we get

Tfi = Ṽ (q∗) ⟨Φb|
∑
j∈a

eiq
∗·r′j |Φa⟩

× ⟨ΦB|
∑
k∈A

e−iq
∗·rk|ΦA⟩
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We reach the formulas

● T-matrix

Tfi = Ṽ (q∗) Fba(−q∗) FBA(q∗)

● Transition form factors

Fba(q) = ⟨Φb|
∑
j∈a

e−iq·r
′
j |Φa⟩

FBA(q) = ⟨ΦB|
∑
k∈A

e−iq·rk|ΦA⟩

● Ddifferential cross section

dσ

dΩ
=
µiµf
(2π)2

kf
ki
|Ṽ (q∗)|2 (reaction part)

× |Fba(−q∗)|2 |FBA(q∗)|2 (structure part)
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2.4 Rearrangement collision

Consider a reaction

A(d, p)B

A B

d
p

n

Assume

・ A is inert core.

・ Neglect the spins

・ Interaction

V = Vpn(rp − rn)
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Use the coordinates

r = rp − rn, R =
rp + rn

2

n

p

A

Wave functions

ϕi = eiki·R, ϕf = eikf ·rp

Φa = ϕd(r), ΦB = ΦAψn(rn)
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T-matrix

Tfi =
∫
d3rp

∫
d3rn

{
e−ikf ·rp ψ∗n(rn)

}
× Vpn(r)

{
ϕd(r)e

iki·R
}

Fourier transform Vpn(r)ϕd(r)

Vpn(r)ϕd(r) =
∫ d3p

(2π)3
D(p) eip·r

The T-matrix becomes

Tfi =
∫
d3rp

∫
d3rn

∫ d3p

(2π)3
D(p)

× e−ikf ·rpψ∗n(rn)e
ip·reiki·R

=
∫
d3rp

∫
d3rn

∫ d3p

(2π)3
D(p)

× e−ikf ·rpψ∗n(rn)e
ip·(rp−rn)eiki·(rp+rn)/2

= D

kf − ki
2

 ∫
d3rnψ

∗
n(rn) e

−i(kf−ki)·rn

= D

kf − ki
2

 ψ∗n(−q∗)
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● Differential cross section

dσ

dΩ
= K

∣∣∣∣∣∣D
kf − ki

2

∣∣∣∣∣∣
2

|ψn(−q∗)|2

○ We may get information about

the neutron wave function in B.

28



[Comment 1]

● Zero range approximation

Has been widely used for (d, p) reaction

Vpn(r)ϕd(r) = D0δ(r)

means

D(p) = D0

Then
dσ

dΩ
= K D2

0 |ψn(−q)|2
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[Just for fun]

Schrödinger equation for the deuteron

−∇2
r

mN
+ V (r)

ϕd(r) = −ϵdϕd(r)
ϵd : Binding energy of the deuteron

Fourier transform of V (r)ϕ(r)

D(p) =
∫
d3rV (r)ϕd(r)e

−ip·r

=
∫
d3r

∇2
r

mN
− ϵd

)ϕd(r)e−ip·r

= −
 p2

mN
+ ϵd

ϕd(p)
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2.5 Exchange processes

2.5.1. NN scattering

p０

p1

p０ p０

p1 p1

p1

p０

Direct Exchange

Consider a nucleon-nucleon (NN) scattering

p + p→ p + p

NN scattering t-matrix

tNN = tDNN − tENN

We cannot distinguish p0 and p1

Ignore spin and isospin for simplicity.

Just learn the essence.
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(1) Direct process

tDNN = ⟨eikf ·r0e−ikf ·r1|V (r0 − r1)|eiki·r0e−iki·r1⟩
= Ṽ (q∗)

(2) Exchange process

tENN = ⟨eikf ·r1e−ikf ·r0|V (r0 − r1)|eiki·r0e−iki·r1⟩
= Ṽ (Q∗)

with

Q∗ = −(kf + ki) = −(2ki + q)
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● Pseudo-potential approximation

High energy forward scattering

q∗ ≪ 2ki

We may use an approximation

tENN = Ṽ (Q∗) ≈ Ṽ (−2ki)

Ṽ (−2ki) : a constant with respect to q∗,

determined by the initial state
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Now we can calculate the full tNN

by only the direct term of the potential

V = V (r0 − r1)− V0δ(r0 − r1)

where

V0 = Ṽ (−2ki)

The 2nd term : Pseudo-potential

○ This prescription is very useful

to represent the exchange effects

by the direct processes

via a local potential !

○ In realistic cases, we must consider

・ spins, isospins

・ tensor forces

・ velocity dependent forces

etc.
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2.5.2. Nucleon-nucleus scattering

( NA scattering )

A A*

p p

V

Consider the exchange process in

A(p, p′)A∗

Ignore spin and isospin.
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● Initial state

|i⟩ =
∫ d3p

(2π)3
(p|ΦA⟩eip·rk eiki·r0

● Final state

|f⟩ =
∫ d3p′

(2π)3
(p′|ΦA∗⟩eip

′·r0 eikf ·rk

● Interaction

V (r0 − rk) =
∫ d3p

(2π)3
Ṽ (p)eip·(r0−rk)

Use the momentum conservation

at each vertex.

T-matrix for the exchange process

is now written as

TE
fi = −⟨f |V (r0 − rk)|i⟩

= −
∫ d3p

(2π)3
⟨ϕ∗A|p− q∗)Ṽ (p− q∗ − ki)(p|ϕA⟩
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Noting

p, p′ ≤ kF ≈ 1.4 fm−1

Momentum of 300MeV proton

k =
√
E2
p −m2

p = 808 MeV ≈ 4.0 fm−1

We may take an approximation

Ṽ (p− q∗ − ki) = Ṽ (p′ − ki) ≈ Ṽ (−ki)

which is a constant for the given ki.

Now the T-matrix for the exchange process

becomes

TE
fi = −Ṽ (−ki)

∫ d3p

(2π)3
⟨ϕ∗A|p− q∗)(p|ϕA⟩

= −Ṽ (−ki)⟨ϕA∗|
∑
k
e−iq

∗·rk|ϕA⟩

= −Ṽ (−ki)FA∗A(q∗)
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Use the interaction with pseudo-potential

V = V (r0 − r1)− Ṽ (−ki)δ(r0 − r1)

and calculate only the direct term.

We get the full T-matrix as

Tfi =
[
Ṽ (q∗)− Ṽ (−ki)

]
FA∗A(q

∗)

In this approximation

Tfi ∝ FA∗A(q
∗)

Very useful !
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[Comment]

・ ki in the previous subsection is

the incident momentum

in the cm frame of the NN system,

・ ki here is the incident momentum

in the cm frame of the NA system

Note

2kNNi = kNAi ≈ ki,lab for mA →∞

For a central potential

Ṽ (p) = Ṽ (p)

Thus we can set

Ṽ (−2kNNi )) = Ṽ (2kNNi ))

≈ Ṽ (−kNAi )) = Ṽ (kNAi ))

≈ Ṽ (ki,lab))
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IV PWBA II

– Reaction to Continuum

1. Simplest reaction

p n

d

p

n p

Consider the reaction

d(p, n)pp

Simplifications

・ Ignore spins, isospins, Pauli principle,

・ mp = mn = mN

・ Consider only the inclusive cross section
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1.1. Formalism

Use the coordinate system

1

0

2

G

r0 + r1 + r2 = 0

r0 −
r1 + r2

2
= R

r1 − r2 = r

Final state momenta (p0, p1, p2)

p0 = kf

Pres = p1 + p2 = −kf ,
p1 − p2

2
= κ
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● Initial state

|i⟩ = ϕd(r) e
iki·R

● Final state

|f⟩ = eikf ·Rϕpp(κ; r)

Asymptotic form

ϕpp(κ; r) ∼ eiκ·r

ϕd : deuteron wave function

ϕpp: wave function of the final pp system

● Interaction

V (r0 − r1) =
∫ d3p

(2π)3
Ṽpn(p)e

ip·(r0−r1)

=
∫ d3p

(2π)3
Ṽpn(p)e

ip·(R−1
2r)
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● T-matrix

Tfi = ⟨f |V |i⟩

= Ṽ (q∗)
∫
d3rϕ∗pp(κ; r)ϕd(r)e

−iq
∗
2 ·r

= Ṽ (q∗)Fpp,d(κ;
q∗

2
)

● Transition form factor

Fpp,d(κ; q) =
∫
d3rϕ∗pp(κ; r)ϕd(r)e

−iq·r

● Momentum transfer to the internal motion

q =
q∗

2
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[Comment]

On the center of mass problem

Why differs

⟨ϕpp|e−iq·r|ϕd⟩ vs. ⟨ϕpp|e−iq
∗·r1|ϕd⟩

We must take the replacement

r1 −→ r1 −
r1 + r2

2
=

r

2

then we get

e−iq
∗·r1 −→ e−iq

∗·r2 = e−iq·r, (q =
q∗

2
)
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● Inclusive cross section

d2σ

dω∗dΩ
= K|Ṽ (q∗)|2

×
∫ d3κ

(2π)3
|Fpp,d(κ;

q∗

2
)|2δ(ω∗ − ω̄∗)

where

ω̄∗ =
m2
p −m2

d −m2
n +M 2

pp

2
√
s

with the invariant mass of the pp system

M 2
pp = (E∗1 + E∗2)

2 − k2f
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● Excitation Energy

Assume

Invariant mass = Mass + Internal energy

we may write

Mpp = 2mp +
κ2

mp
= md + Ex

Ex : Excitation energy of the 2N system

(with respect to the target ground state)

Then we get

ω̄∗ =
m2
p −m2

d −m2
n +m2

d + 2mdEx + E2
x

2
√
s

≈ md√
s
Ex
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Introduce

ω =

√
s

md
ω∗

which means

Energy transfer to the internal motion

● Double differential cross section

d2σ

dω∗dΩ
= K

√
s

md
|Ṽ(q∗)|2

×
∫ d3κ

(2π)3
|Fpp,d(κ; q)|2δ(ω − Ex)

with

Ex = 2mp −md +
κ2

mp

———————————————————
With spins, isospins, antisymmetrization, etc., the

formula is more complicate.

See A. Itabashi, K. Aizawa, and M. Ichimura,

Prog. Theoret. Phys, 91 91(1994)
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1.2. Practical calculation

(1) Fix ω∗, then =⇒ ω =⇒ Ex =⇒ κ̄

(2) Solve the Schrödinger equations

・ for the deuteron

H2Nϕd(r) = (2mN − ϵd)ϕd(r)

・ for the pp system

H2Nϕ
∗
pp(κ̄; r) = (2mN +

κ2

mp
)ϕ∗pp(κ; r)

for low partial waves(ℓ ≤ 2).

Use the plane wave for higher partial waves

(3) Calculate the form factor

Fpp,d(κ; q) =
∫
d3rϕ∗pp(κ; r)ϕd(r)e

−iq·r

by the partial wave expansion.
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図 1 Cross sections and polarization observables Di of

the 2H(p, n) reaction at Tp = 345 MeV. T. Wakasa et

al., Phys. Rev. C69 (2004) 044602
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2. Response function formalism

The above method works for very limited

cases, such as a few nucleon target d,3He.

Let’s consider a method applicable for more

general cases.

T

N

A

N’

1

2

A + N −→ N ′ + X (anything)

nr : number of outgoing clusters

in the residual system X.
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Take only the direct term

(treat the exchange term

by the pseudo-potential.)

T-matrix is given by

Tfi = Ṽ (q∗) ⟨ΦX |ρ̃(q∗)|ΦA⟩

with the transition density

ρ̃((p) =
A∑
k=1

e−ip·rk

X represents

X = (nr,p1, · · ·pnr, α)

and f = (k′, X)

α : the quantum number other than

(nr,p1, · · ·pnr
)
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Use the notation
∑
X , which means

∑
X

=
∑
nr,α

∫ d3p∗1
(2π)3

· · · d
3p∗nr
(2π)3

(2π)3δ

k′ + nr∑
k=1

p∗k



Inclusive double differential cross section is

now given by

d2σ

dω∗dΩ
= K

∑
X
|Tfi|2 δ(ω∗ − ω̄∗)

where

ω̄∗ =
m2
N −m2

A −m2
N ′ +M 2

X

2
√
s

MX : invariant mass of the system X .
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Write

MX = mA + EX
x

EX
x : Excitation energy of the system X

with respect to the target ground state.

ω̄∗ ≈ mA√
s
EX
x

We get

Double Differential Cross Section

d2σ

dω∗dΩ
= K

√
s

mA

∑
X
|Tfi|2 δ(ω − EX

x )

with the energy transfer to the internal

motion of X

ω =
mA√
s
ω∗
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Rewrite this as

d2σ

dω∗dΩ
= K

√
s

mA
|Ṽ (q∗)|2Rρ(q

∗)

with Response function for ρ

Rρ(ω, q
∗) ≡ ∑

X
|⟨ΦX |ρ̃(q∗)|ΦA⟩|2δ(ω − EX

x )

○ The structure part Rρ(ω, q
∗)

is well separated !

○ The question is how to calculate

the infinite sum
∑
X .

A main theme !!!
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Introduce

Hamiltonian of the system A(= X)

HAΦX = EX
x ΦX , (EX

x = 0, if X = A)

We can express the response function as

Rρ(ω, q
∗)

=
∑
X
|⟨ΦX |ρ̃(q∗)|ΦA⟩|2δ(ω − EX

x )

= −1

π
Im

∑
X
⟨ΦA|ρ̃†(q∗)|ΦX⟩

1

ω − EX
x + iη

× ⟨ΦX |ρ̃(q∗)|ΦA⟩]

= −1

π
Im

⟨ΦA|ρ̃†(q∗) 1

ω −HA + iη
ρ̃(q∗)|ΦA⟩



∑
X and ΦX disappeared !

Can we calculate this response function ?
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3. Summary

● Inclusive double differential cross section

d2σ

dω∗dΩ
= K

√
s

mA
|Ṽ (q∗)|2 Rρ(ω, q

∗)

● Response function

Rρ(ω, q)

= −1

π
Im⟨ΦA|ρ̃†(q)

1

ω −HA + iη
ρ̃(q)|ΦA⟩
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● Key points

(1) Factorization of the reaction part and

the structure part.

(2) Each part depends only

on the momentum transfer q∗

as to the spatial degree of freedom.

(3) The feature (2) is due to the fact that

the interaction V is a local operator i.e

V = V (r0 − rk).

(4) To get reliable structure information,

we must know the reliable reaction part,

especially the interaction V .
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(5) Infinite sum
∑
X is replaced by

the expectation value of the target state,

i.e. Response function

of the one body operator.

(6) In a certain approximation

such as HF, TDA, RPA, etc.

these response functions are calculable

as will be discussed.
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[ Caution ]

Distinguish the three energy transfers

ωlab in the lab frame

ω∗ in the cm frame

ω to the internal state

= excitation energy

of the residual system, Ex,

with respect to the target ground state
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