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III PWBA'1
1. PWBA

As the first stage 1

Let’s consider reactions in PWBA
(Plane Wave Born Approximation )
@ This is an ideal clean impulse model.

@ This may not be realistic, but tells us

fundamental structure of the reactions.

@ e can learn what information can be

obtained from the reaction considered.

@ This is very important

to design (or analyse) experiments.



Let’s consider a final two-body reaction

at+A—0b+B

usually written as

Ala,b)B

1.1 Born Approximation

Assume that the interaction works only once

T = (0P Pp|V|PAD0;)

® 4 : wave function of the particle A

®p : wave function of the particle B

®, : wave function of the particle a

®, : wave function of the particle b

¢; . w. f. of the relative motion between a and A
¢ : w. . of the relative motion between b and B

V . interaction between a and A or b and B



1.2 Plane Wave Approximation

Assume that the relative motions are

described by the plane wave
¢i p— eiki'}zi7 ¢f — eikf.Rf

R, : Relative coordinate between a and A
R, : Relative coordinate between b and B
k;, : Momentum of the relative motion

in the initial channel

k; : Momentum of the relative motion

in the final channel

1.3 PWBA

Plane wave approx. + Born approx.

sz' = <eikf.qu)bCDB|V’@Aq}aeiki'Ri>



2. Fundamental Examples

2.1. Simplest (fundamental) case

“ | 0

Consider a reaction
A(a,a")B

a, a' : structureless point particle



d O«

@® Interaction
Sum of the two-body interaction

V = Z V(T’o — ’l”k>
keA

Its Fourier transtorm
d>p

(27)? V(p) eP o=

Virg—mry) = /

® Wave functions of the relative motion

¢z' _ eiki'r07 ¢f _ eikf-’ro



@® Calculation of the T-matrix

Ty = (pyPp|V|Pagi)
3

% /d3r0 o ik T P kT

- <<1>Br =,

p) (2m)°6(k; +p — ky)
@B! %e_lp 71| )

= V(") (0] Se 0

with Momentum Transfer

q =ky—k



® Density operator

We define the density operator

A ’p i
p(r) = Py o(r —rp) =/ (QW)gp(p)ep
then
A
plp) = [ drp(r)e " =3 ¢ P
k=1

@® Transition form factor

We define the transition form factor

Fpa(q”) = (P %eiq*'rk!@m
= (®p|p(q")[Pa)

® T-matrix

~

Ty =VI(q") Fpalq’)



@® Differential cross section

do

—:KV *QF* *\ |2
e V(g")|” |Faa(q")]

reaction  structure

part part

O The reaction part and the structure part
are factorized !

O Determined only by
the momentum transfer g*

except for the kinematical factor

iy
o it kg

(277')2 kz




[Comment 1]

Note the relation ¢* < 6

¢ =|q*| = \/kz2 + k7 — 2kik cos 6

We can easily guess the angular distribution.

[Comment 2|

Note the restriction !

A
> 1 =0
=1

Exactly speaking p(r) is not a one-body

operator.
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2.2 Cases with spin and isospin

Consider a reaction

A(p,n)B

i, by + z-component of the nucleon spin

11



2.2.1 Isospin operators

(Pauli) isospin matrices of the nucleon 7

T < O

Isospin operators

t= -1

Isospin raising and lowering operators

. 1 . 0 1
tT =t, +it, = 5(@4—1@) = (O O)
_ . 1 . 00

Convention in nuclear physics

T.|n) = |n), T.|p) = —|p)
n) =t"|p), |p)=1t"|n)

12



2.2.2 Case 1
@® Interaction
V= %(To 1) (00 - 01) V(T — T)
= %(7‘0 Tk ) (00 - o)

d’p

< [Totp) oo 2P

® T-matrix

Ty = ‘N/m<q*> <Mfa n|Tooo| i, D)

- (Dp] Ekj Tkake_iQ*'r’“ D 4)
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Calculation of the isospin part
Ty T = tgt,; + to‘t; + T 0Tz k
thus

(n|7T0 - Telp) = t;

The T-matrix is now written as

Tt = Vio(@®) {pigloo| )
(@sl St

= Violq") Slowoluy i Foa" (a")

where (a = x,y, z) and

Fii(q) = (0] Xt oupe D)
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Calculation of the differential cross section

do ~
— =K |V
e V.o (q")|

1
X Z§ZZ<MH%0|M@> (tpl ool i)
nr 2

Op| Sty oape 4 THD 4)*
P

X <(DB Z t/;(fb,ke_iq*ork ‘(DA>
k

X

S

~ . 1
= K |V:nlq)*5 S Tr 0wl
X (Dp| Sty oupe T THD )
k
X <(I)B %t;gbjke_iq*ork‘q);o

=K "N/Ta<q*)‘2
X 3 [{@p] 3t oure™ D)
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Summing up the calculation, we get
@® T-matrix

T = Viola") S0, Fra" (@)

@® Isovector (IV) spin-vector (SV)

transition form factor
+,a * ~ *
Figi®(@") = (@5]65) (g")|a)
@® IV-SV transition density

p(q) = X to, e

16



@® Differential cross section

do ¥ * —,a *
oo =K Viol@ ) > |Fpa" (@)

The reaction part and the structure part are

factorized again !
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2.2.3 Case 2

- Interaction

V = Zk:(T() 1) Ve(rg — 71)
+ %(7'0 - T) (00 - o)) Vig(ro — T)

- T-matrix

Tji = Vi(q") 8y Fpd (@)
+ Viola@®) Sloul,,,, Fd”(a")

- Isovector (IV) spin-scalar (SS)

transition form factor

Fii(q) = (Pp]p(q)|@a)

- IV-SS transition density

@) - St

18



How about the interference between the

IV-SS and IV-SV parts 7

%: 5/~Lfa,uz' [O-a],uf”ui T

Trlo,)--- =0

DN | —

Interference term o< )

1
1
2

The sum of the spin z-components %Zu s 18

crucial to cut the interference term.

This is a characteristic of PWBA |

@® Differential cross section

do ity ky 2 | (=) 12
B F
10~ orr i UV Fsd @)

.
+Veol@)? ¥ [FSL (@)

19



2.2.4. Special case (g* =0)
At g* = 0, the structure parts become

(1) Transition strength
to the Isobaric Analogue State (IAS)

B(IAS* : A — B) = [{(®p %tﬁqmﬁ

= |Fyi(a =0

(2) Gamow-Teller (GT) transition strength

B(GT*: A= B) =Y [(d4 %tkaa,kmﬂ?

:|:,CL *
=% |Fpi" (@ =0)
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O These are the key examples to extract

structure information from reactions.

O But can we get the form factors
at q- =07
Unfortunately No ! in general.
We need tricks.

21



2.3 Reaction of composite particles

—{} Ol

| .

- Interaction

V:Z ZV(’I"j—T‘k)

j€a keA

[ Y-

p)eip-(r;-%—R—'rk)

j€a k€A
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a A
Take coordinates
ri=7;+R
Plane waves of the relative motion

sz' _ eiki-l:i7 ¢f _ eikf-R

Carry out the integration over R, we get

Ty = V(g') (0] X € 73]0,)

J€a

X (Dp| 3 TP )
keA

23



We reach the formulas

® T-matrix

~

Ty =V(q") Fy(—q") Fpa(q")

@® Transition form factors
Fia(q) = (p| X e7977|D,)
Jjea

Fpa(q) = (Op| 3 97| y)
keA

@® Ddifferential cross section
do _ puijiy ky
df (271')2 /{7@

< |Foa(—") |Fpala)?  (structure part)

V(gh)|? (reaction part)
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2.4 Rearrangement collision

Consider a reaction

A(d,p)B
Ja\ {r‘p P
k, ==(d & > ky
\i n
In
A B

Assume
A is inert core.
Neglect the spins

Interaction

V= Vpulr, — 1)

25



Use the coordinates

r="7,— T, R =

Wave functions
ik, R iker
¢i = e ¢f =e" /P

(I)a — gbd(r)a (DB — q)Awn(rn)
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T-matrix

Ty = /d?’rp/d?"rn {e_ikf'rp wj;(rn)}
X V() {dalr)e’ 7}

Fourier transform  V,,,(7)pq(7)

Vinlr)outr) = [ 525 Dlp) e

The T-matrix becomes
3 3 dgp
Ty = /d frp/d rn/ (2@3D(p)
< e—ikf-rpwj;(,rn>eip-reik,--R
dgp
3 3
— /d rp/d rn/ <27T)BD(p)

x e 7Kg ot (o, )elP (Trm ) ki () /2
- (’“f - 5) [ &y () e Es R

=D (kf - IZ) o (—q7)

27



@® Differential cross section

do 2

k;
e bl

*\ |2
40 ’wn<_q )‘

O We may get information about

the neutron wave function in B.

28



[Comment 1]

@® Zero range approximation

Has been widely used for (d, p) reaction

Von(T)¢a(r) = Dod(7)

mearls

Then

29



[Just for fun]

Schrodinger equation for the deuteron

o

my

n v<r>) bulr) = —eadra(r)

€4 . Binding energy of the deuteron

Fourier transform of V (r)¢(r)

D(p) = [ d’rV(r)ga(r)e "

30



2.5 Exchange processes

2.5.1. NN scattering

| |
1 |
' q Q!
| 1
pl < > pl pl —» 0

Direct Exchange

Consider a nucleon-nucleon (NN) scattering

p+p—p+p

NN scattering t-matrix

INN = t]l\)fN - t]j?/’N

We cannot distinguish pg and p;

Ignore spin and isospin for simplicity:.

Just learn the essence.

31



(1) Direct process

t]l\)/']\/' — <eikf-’l“()e—ikf-’r1 ‘V(r() L ,',,1) ‘eiki'TOG_iki'r1>

=V(q")

(2) Exchange process

Q = —(k; + ki) = —(2k: + q)

32



® Pscudo-potential approximation

High energy forward scattering
q < 2k
We may use an approximation

tvy =V(Q") = V(—2k;)

~

V(—2k;) : a constant with respect to q*,
determined by the initial state

33



Now we can calculate the full ¢y

by only the direct term of the potential

V = V(’I"Q — ’I"l) — %5(’)"0 — ’I"l)

where

~

Vo = V(—2k;)

The 2nd term : Pseudo-potential

O This prescription is very useful
to represent the exchange effects
by the direct processes

via a local potential !

O In realistic cases, we must consider
SpINs, 1S0SPINS
tensor forces
velocity dependent forces

cte.
34



2.5.2. Nucleon-nucleus scattering

( NA scattering )

Consider the exchange process in

A(p,p")A*

Ignore spin and isospin.

35
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@® Initial state
. d>p "
) = ] R pleaern g
@® [inal state
d3 /

= G

@ I[nteraction

<p ‘(I) > ip’-r eikf"’"k:

V(p>eip'(?“o—"°k)

V(’I"Q — ’I"k) = /

Use the momentum conservation

at each vertex.

T-matrix for the exchange process

1S now written as
Tsz — <f\V(7“0 — Tk)|i>
Wip — q" — ki) (p|da)

36



Noting
p.p < kp~14fm!

Momentum of 300MeV proton

k= \/E2—m2=2808 MeV ~ 4.0 fm ™!

We may take an approximation

~

Vip—q" — k) =V(p' — k) = V(—k)
which is a constant for the given k;.

Now the T-matrix for the exchange process

becomes

TF = <Vick) [ 5 Fs (0P — a')plos

= V(=) (0| S o)

~

= —V(=ki)Faalq’)

37



Use the interaction with pseudo-potential
V = V(T‘Q — ’I"1> — V(—kﬁz)5(’l"0 — ’I"1>

and calculate only the direct term.

We get the full T-matrix as

~

Ty = |Vigx) — V(—ki)| Fa-alq")
In this approximation

Ty o< Faxa(q)

Very useful !

38



|Comment]

- k; in the previous subsection is
the incident momentum
in the cm frame of the NN system,
- k; here is the incident momentum

in the cm frame of the NA system

Note

Zki‘N — ki-\IA ~ Kijap for mg — 00

For a central potential

~ ~

Vip) =V(p)

Thus we can set

\7( QkNN)) V(QkNN))
V(=k'") = V(E')

V (ki)

Q

Q
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IV PWBA II

— Reaction to Continuum

1. Simplest reaction

P k, kf n

|
|
|
p i D D1
0 |
p D2

Consider the reaction

d(p,n)pp

Simplifications
Ignore spins, isospins, Pauli principle,
my, = My, = My

Consider only the inclusive cross section

40



1.1. Formalism

Use the coordinate system

ro+71r1+719=20

ri+r
ro — 12 2_ R

™ —To=T

Final state momenta (po; D1, pz)

Pozkf
-Pres:pl_l_pQZ _kfa
P1 — D2

= K

2

41



@® Initial state

i) = dulr) P
@® [inal state
|f> — eikf.R(/bpp(’{S r)
Asymptotic form

?bpp(“; "") ~ T

¢4 : deuteron wave function

¢pp: wave function of the final pp system

@® Interaction

d3p ¥ ip-(ro—ry)

V(’ro — rl) — / (2%)3%”(1))6 0—T1
3

’p ~ (R—3%7)

42



@® T-nmatrix

Tt = (fIV]i) *
=V(q") [ d®r¢?,(k;m)a(r)e 2
= V(g Eypali: )

@® Transition form factor
. 3 * . —1q-
Fpp,d("% q) — /d r pp(K’v r)gbd(r)e o
@® Momentum transfer to the internal motion

q:?

43



|Comment]

On the center of mass problem

Why differs
<¢pp‘e_iq.r’¢d> VS. <¢pp‘e_iq*.r1‘§bd>

We must take the replacement

rHL+T0 T
T — T — 5 25

then we get

44



@ [nclusive cross section

d*o ~
:K *\ |2
d Y q>l< 2 * — %k
X /W|Fpp,d("3; 3)\ O(w” — W)
where

m2 —m3 — m%+M§p

W NE

with the invariant mass of the pp system

M3, = (Ef + E3)* — kt

45



@® Excitation Energy

Assume

Invariant mass = Mass + Internal energy

we may write

2
K
M,, =2m,+ — =mg+ £,
myp
FE, : Excitation energy of the 2N system

(with respect to the target ground state)

Then we get
m? — mi — m? + m3 +2myE, + E?

W NE

mq
Ly o8
NE

Q

46



Introduce

which means

Energy transfer to the internal motion

® Double differential cross section

d°o VS~
= KY=|V.g")|?
dw*dS) m | (4 )
X / \Fppd K;q)](w — E,)
with
2
E,. = 2mp — Mg+ —
My

With spins, isospins, antisymmetrization, etc., the
formula is more complicate.
See A. Itabashi, K. Aizawa, and M. Ichimura,

Prog. Theoret. Phys, 91 91(1994)
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1.2. Practical calculation
(1) Fix w* then =—=>w = FE, =k

(2) Solve the Schrodinger equations

for the deuteron
Honga(r) = (2my — €q4)a(T)
for the pp system

/{2

Honey, (k1) = 2my + — )¢, (K 7)
My

for low partial waves(¢ < 2).

Use the plane wave for higher partial waves

(3) Calculate the form factor

Fopa(k:q) = | d’rdy, (ki) da(r)e "

by the partial wave expansion.
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. +
0.4r 1 \I'"l‘l'"_‘,
> +.oo (1)

= ) %0041
LYY
Q 02r Wﬁ- - ki .
0.0 1 1 1 1
0 50 50 100 50 100
Wiab (MeV)

1 Cross sections and polarization observables D; of
the “H(p, n) reaction at T, = 345 MeV. T. Wakasa et
al., Phys. Rev. C69 (2004) 044602
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2. Response function formalism

The above method works for very limited

cases, such as a few nucleon target d,*He.

Let’s consider a method applicable for more

general cases.

A+ N — N + X (anything)

n, : number of outgoing clusters
in the residual system X.

50



Take only the direct term
(treat the exchange term

by the pseudo-potential.)

T-matrix is given by
Ty = V(') (Px]p(q")|Pa)
with the transition density

~ A —11.
ilp) = 3 v
k=1

X represents

X = (nraplv o 'pnr,OK>
and f = (K, X)

« : the quantum number other than

(nwpl) o pnr)

51



Use the notation ¥ x, which means

d3 d3 ny
Z / pl o pnr( 7_‘_)35 (k/ 4 kz_:lp}:)

X Ny ,& (277')3

Inclusive double differential cross section is

now given by
d’o

dw*dS)

— K % T |? 0(w* — @)

where

m%v—mi—m%w%—M)%
24/s

Mx : invariant mass of the system X.
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Write
My =my + E

E?* : Excitation energy of the system X
with respect to the target ground state.

mA

EX
\/g X

*
a4

We get

Double Differential Cross Section

d°o NG
= KXY | Tw?6(w — B
e mAX|f| (w—E3)

with the energy transfer to the internal
motion of X

mAa
W=—=w

/5

*
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Rewrite this as

with Response function for p

Ryfw,q7) =3 (Dx|p(q")|Da)*0(w — E)

O The structure part R,(w, q*)
is well separated !

O The question is how to calculate
the infinite sum > .

A main theme !l
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Introduce
Hamiltonian of the system A(= X)

H;dx = EXdyx, (EX=0,if X =A)

We can express the response function as

Rp(wa q’)
=3 (Px]p(q")|Pa)0(w — B

1

1
= ——Im
-

w— EX +1in

;@M (q%)|Px)
X (Px|p(@”)|Pa)]

U [( @415 (")

1
= ——Im
-

w— Hx+1n

p(q")|Da)

>y and ®x disappeared !

Can we calculate this response function 7
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3. Summary

@® Inclusive double differential cross section

d°o N
— KXY |V %\ |2 R *
dw*dﬂ ma ‘ (q )‘ p(waq )

@® Response function

Ry(w,q)
_ —%Im(@A!ﬁT(Q) —p(q)| D)
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® Key points

(1) Factorization of the reaction part and

the structure part.

(2) Each part depends only
on the momentum transter g*

as to the spatial degree of freedom.

(3) The feature (2) is due to the fact that
the interaction V is a local operator i.e
V=V(ry—ry).

(4) To get reliable structure information,
we must know the reliable reaction part,

especially the interaction V.
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(5) Infinite sum T is replaced by
the expectation value of the target state,
i.e. Response function

of the one body operator.

(6) In a certain approximation
such as HF, TDA, RPA, etc.

these response functions are calculable

as will be discussed.
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| Caution |

Distinguish the three energy transters

W™ in the lab frame
w*  in the cm frame
W to the internal state
= excltation energy
of the residual system, F,.
with respect to the target ground state
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