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Giant resonances and sum rule
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What is a Resonance?

M.N.Harakeh and A. van der Wunde, “Giant Resonances”.

A powerful method to study the properties of a system

= Measure its response to the external perturbation/impact

Nuclear responses to real/virtual photons

+ w < 10 MeV : Excitations including one or a few particles
e w~ 10 — 30 MeV : Broad resonances involving many particles
- w ~ 100 MeV : Quasi-elastic scattering (scattering with a target nucleon)
for (e,e’) and (p,n)
- w 2= 300 MeV A rAesonance due to nucleon excitation
o
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What i1s a Resonance

Resonance = Fundamental modes of nuclear vibration ( in macroscopic view).

+ shape oscillation

* spin oscillation

(compression, dipole, ...)

(out-of-phase oscillation between T and 1)

- isospin oscillation (out-of-phase oscillation between p and n)

Resonances can be classified by:
multipolarity L
- AL=0 : monopole
- AL=1: dipole
- AL=2 : quadrupole
spin S

« AS=0 : spin-scalar
(in-phase osc. b/w T and l)

« AS=1 : spin-vector
(out-of-phase osc. b/w T and 1)
isospin T
« AT=0 : iso-scalar (I1S)
(in-phase osc. b/w p and n)

« AT=1 : iso-vector (IV)
(out-of-phase osc. b/w p and n)

AL =0 &

AL =1

IVSDR
P
@EﬂT
ISGQR IVGQR
AT =0 AT =1 AT =0 AT =1
AS =0 AS =0 AS =1 AS =1

M.N.Harakeh and A. van der Wunde, “Giant Resonances”.



Graphical images of Resonances

. . ] Animations: taken from presentation
Electric giant resonance (spin transfer AS=0) by T. Aumann @ INPC2007
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B.L. Berman and S.C. Fultz, RMP 47,713(1975).




Quantum mechanical description of Resonances

‘Resonance = collective motion involving many if not all the particles in the nucleus

In quantum mechanics:
« The resonance is a transition between the ground state and the collective state
* Its strength is described by a transition amplitude
The transition strength depends on the basic properties of the system:
» The number of particles participating in the transition } of the ground state
® The size of the system

The total transition strength should be limited by a sum rule:

- The sum rule depends only on ground-state properties

The “Giant” resonance and the sum rule:
A giant resonance (GT) = resonance exhausting a major part of the sum rule

- Typically more than 50%

‘ What is the specific form of the sum rule (E1, GT, etc.)? ‘




Sum rule



Sum-rule in quantum mechanics

Assume that the Hamiltonian F has a complete set of:
- eigenfunctions |n) with
- eigenvalues FE/,

For the Hermitian operator A , we define the operator (commutator) C:
C=[H, A= HA - AR

* The operator C is anti-Hermitian:

ct = (HA) — (AH) = AH — HA = —C
For C’, we find:

(n|Clm) = (n|(HA — AH)|m)
= (n|(En,A — AEy,)|m) (- H|m) = En, |m), H|n) = E, |n))

= (En — Em)(n|A|lm)

and also:

[(n|A|m)|* = (n|A|m)*(n|A|m) = (m|A|n)(n|A|m) (.- AT = A)



Sum-rule in quantum mechanics

(n[Clm) = (En — Evp)(n|Am) R
(nlAlm)2 = (mlAln)(n|Ajmy [ 0
Using these relations, we can derive:

(m|[A, C]Im)

— (m|AC|m) — (m|CA|m)
=" [tmlAn)y(miClm) — (mICln)(nlAlm)| ¢ 3 i)l =1

=3 [<m|A|n> (n|Alm)(Ey — Em) — (Em — En)(m|A[n)(n|A|m)

" . -k
=2) (En — Ep)|(n|Alm)|? b

Since C = [H, A], we find:

(m|[A, [H, A]]|m) = 2) (En — Ep)|(n|Alm)|?



Sum-rule in quantum mechanics

(m|[A, [H, A]]|m) =2 (En — Ep)|(n|A|m)|?

This relation can be also described as:

(m|[A, [H, A]]lm) = 2(m|A(H — E,;,)A|m)

since
H|n) = E,|n)

and the completeness relation:

> In)(n| =1



GDR (TRK) sum rule

The Thomas-Reich-Kuhn (TRK) sum rule shows:

For the E1 operator: — Nuclear physics convention 5yphotons

A . 1
R /| 3 . t3(i) = +5 (neutron)
O(El) = — ppe t3(2)z; {t3(z‘) — —% (proton)
=1
The energy-weighted sum of the response function (transition strength):
Re1(w) = ) |(n|O(E1)|0)?6(w — (En — Ey))

should be equal to the sum rule value

€© proton &> neutron

3 AR
327 M

S1(B1) = [ Rea(w)wdw = L (0[[0(B1), [, 0(B1)]]0) =

irrespective to the potential V (interaction) Exercise: Derive the TRK sum rule

» TRK sum rule = model-independent sum rule  |referring Appendix B of this lecture.

Giant resonance

« A resonance which exhausts a major part of the sum-rule strength (> 50%).
— Observed GDR'’s exhaust their sum-rule strengths?



Experimental evaluation of TRK sum rule

Ratios of the experimental S1(E1) up to 30 MeV (=GDR) and the TRK sum rule:
« The GDR strength corresponds to ~100% of the TRK sum rule.

- The GDR is a collective nuclear vibration in which all the protons move collectively
against all the neutrons.

1.5+
o
Q
“‘ T {
W 1.0 : : )—L#—L 100%
; :
~
> |t *
4]
— 0.5
L
05
0.0 | | | [ A.Bohr and B.R.Mottelson,
' 0 50 100 150 200 “Nuclear Structure”

A

In general, there is the appropriate sum rule depending on AL, AS, and AT.
» If the total strength in a limited energy region (< E) does not satisfy the sum rule.
— Further strengths exist beyond E.




What can we learn from GRs?

For each mode specified by AL, AS, and AT, the relevant sum-rule exists:
 e.g., E1 (TRK) sum rule for AL=1 (dipole), AT=1 (isovector), and AS=0
- A giant resonance (GT) = resonance exhausting a major part of the sum rule

- Typically more than 50%

If the total strengths including the GR do not exhaust the sum rule:
+ Missing strengths should exists beyond the GR excitation energy
« Some basic assumptions for the sum-rule might be wrong

* e.g., a nuclei consists of point-like protons and neutrons

What can we lean from the strength and position of GR

* peak position : : o .
P P } Both depend on the residual interaction in nuclei

« fraction to the sum-rule

The residual interaction dependence can be understood easily




Simple 2-states model w/o residual int.

. G.E.Brown, “Unified theory of nuclear models and forces”
Excite two p-h states via(O (neutron — proton) K.Yako, Private communication.

2
5 @

proton neutron

0) W) [ P2)
Hamiltonian of daughter nucleus w/o residual interaction

Hy ‘I’1> — &1 ‘1’1)

Hy ‘I’2> — €2 ‘I’z)
Transition matrixes via () operator

‘|\IJ1) and |¥>) are orthogonal‘

=y — |

. to state 1 : <\p1|0|0> = X, Transition stren%?s |(groba|t;i|{iti|ezs) become
. 3 — 1| = |2
- tostate2: (U,|0|0) = X5 (forgetting about CG coefficients, neutron excess, etc.)

No GR w/o residual interaction (|¥,) and |¥2) are equally excited)‘




Simple 2-states model with residual int.

Add residual interaction: V
» Hamiltonian and Schrédingereq.: H = Hy +V  (Hgo + V)|¥) = E|W¥)
- Eigenstate: |W) = c1|¥y1) + c2|¥P2) « Mixing |¥,) and |¥s) with V

Similarity between residual interaction and p-h excitation by O

p-h matrix element by V‘ ‘p-h excitation by O ‘
repetition of . \/
v a p-h excjtation X 9
by O.
(5]
(W5 V|¥5) (¥;|0)0) = X;

Since the p-h matrix element by V is a repetition of a p-h excitation by O ,
the matrix element can be expressed as:

(U;|V|W;) ~ AX;X,;  (A:strength of the residual interaction)




Simple 2-states model with residual int.

- Hamiltonian and Schrodingereq.: H = Hy +V  (Ho + V)|¥) = E|W¥)
- Eigenstate: |W) = ¢ |¥q) + c2|P3)
* Matrix elements : (W, |V |W;) ~ AX; X

The secular equation/problem becomes
€1 -+ )\X12 AX1X2 Ci\ E C1
)\X1X2 E92 -+ )\)(22 Co o Co

€1 -|— )\)(12 — F )\X1X2 C1 L 0
}\X1X2 E2 —|— )\)(22 — FE Co o 0

M
det M = 0 for (c1,c2) # (0,0)




Solution

Assumption for simplicity

€1 = €2 = €p(two states are degenerate) J— |

A > 0 (repulsive)

Solution #1 (Low-lying state)

- E = &g (not changed)

* c1 X1+ cx2Xs =0

Transition matrix: D = (\P|O|0> =c1 X1 +c2Xs =0
Transition probability : D? = ( (zero probability)

Solution #2 (High-lying collective state)
« F = €9 + )\(_Xl2 - X22) (shifted to higher energy by )\()(12 - X22) )
co X1 = c1Xs
Transition matrix : D = (¥|0]0) = ¢1 X1 + c2 X2 = \/)(12 + X2

Transition probability : D? = X12 —+ )(22 (sum of all the transition probabilities)

‘Both |¥1) and |¥,) contribute constructively. = “Coherent”




Summary of simple model

4 @

Inputs

 Structure: two “unperturbed” states

- Interaction: “repulsive” residual interaction A

Strength

Outputs

Low-lying state

- Similar excitation energy

» Almost zero strength

Strength

High-lying state
« Higher excitation energy by A(Xlz + X%)

- Almost all strength (collective state) A
- Oscillating between |¥) and |W5) %
-
Real width of GR _g
Coupling with more complicated states (2p2h) @

- Fragmentation of strength



The Landau-Migdal interaction

As an effective interaction V (A), the Landau-Migdal interaction V.wm is often used
Vim = Co [fo + f3(m1 - T2) + go(o1 - 02) + go(o1 - 02) (71 + T2)]

W *
AT =0 AT =1 AT =0 AT =1
AS =0 AS =0 AS =1 AS =1

For isovector AT=1 excitations, the following two interactions contribute:
LTM — COf(,)(Tl ‘ 7-2)

+ spin-vector (AS=1) : V%7 = Cogqy (71 + T2) (01 - 02)

+ spin-scalar (AS=0) :

There are several choices for the strength Co:

2
. . . . L 71-NN ~ 3
plonic unit 1 Co = m2 400 MeV fm fxNN  : 1NN coupling const.
7T
. Julich unit : Co = — ~ 30 N 3 m : effective nucleon mass
kK k
3"; kzF m kr : Fermi momentum
T
- Osterfeld, etc.: ¢, = - ~
4 m*kF m*

In the following, we set f, = f’ and g, = g’ for simplicity.

A.B.Migdal, “Theory of Finite Systems and Application to Atomic Nuclei” (1967).



Landau-Migdal parameter f and GDR

Theoretical calculations
* respg by Ichimura-san
« available from RIKEN Nishina HP

Without residual interaction (f’=0)
* Many AJ"=1- 1p-1h states

- Significant widths

- Significantly lower than the exp. data

With residual interaction (f’>0)

« Strengths concentrate to the high-w state

» The peak also shifts to higher w

B(E1) (e®*fm?®/MeV)

- A relatively strong ’=0.75 (repulsive)
reproduces the exp. data reasonably well

f/=0.75 — V7 ~ 300(7 - 72) MeV fm?

GR distributions provide
Important information on the interaction

Energy transfer w;,, (MeV)




Fermi and Gamow-Teller transitions

The GDR is a isovector (AT=1) multipole (AL=1) mode:
 Dipole mode with AL=1 and AS=0 (AJ™"=1")

 Dipole oscillation in the nuclear shape (anti-phase oscillations between p and n)

Here we concentrate on the “simplest” isovector (AT=1) modes:
Simple = no change in the nuclear shape
« No-change in angular momentum (AL=0)
« Experimentally, dominant at g=0 for AL=0
Spin-vector mode with AS=1 (AJ™ =1%)
e Gamow-Teller (GT) by (p,n), etc.
« Magnetic dipole (M1) by (p,p’)
Spin-scalar mode with AS=0 (AJ"=0%)
e Fermi (F) by (p,n), etc.

Both Fermi and Gamow-Teller transitions/modes are closely related to beta decays
— Briefly overview the delay/quenching problem for beta decays




Beta decays

Beta decays and electron capture (EC) are symbolically written as: P Vs
*Bdecay : m — p+e + U "t’(\* .
- Brdecay : p — n e’ + Ve )/
EC et dp o mdtr. 79

The orbital angular momentum, L , carried away by the leptons is small ( L < 1)

« I, = O for allowed transitions

Since leptons, e and ve, have spin 571:

1

The total spin S of the leptons (= spin change b/w initial and final states) is 0 or 1A:

« S5=0 (AJ"™=0%) — Fermi

; O(Fi) — gv Ztk,:lz

k
« S=1 (AJ"=1%) — Gamow-Teller (GT) : O(GTi) = gv Ztk,:l:f"k

. O
1 .

e T4 = 5(7’;,[3 T ZTy) . Isospin ladder operator

- gv, gdga

k

: Pauli spin matrix of a nucleon

: vector and axial-vector weak coupling constants

Beta decay illustration :https://ati.tuwien.ac.at/



Definitions of Fermi and GT transition strengths

The Fermi and GT transition strengths, B(F*) and B(GT*), are defined as:

Fermi: B(F¥) =

2J; +1

GT: B(GT*) =

- J

2J; +1

. Initial spin

(7
(7

tk Ok )
2t > X GIT®I)

G'm|T(k, q)|jm) =

(_1)k—j+j

. ( Definition of reduced matrix elements \
Z. >

, (kgjm|j’'m’)

V25" +1

S

- |2) and |f) : parent and daughter states

)
* (f] |O| [#)  : denote reduced matrix elements

with respect to the spin and coordinate space

— Exercise

1 1

. gl 2
Determine <2 H H >

).

Hints:

h 1111 1
s = —o and 10— | —— ) = —/ — .
2 22122 3




Beta decay strengths and rates

The connection between the beta-decay rates and the F and GT transition strengths,
B(F) and B(GT), is simple and given by

/

>2B(GT) — %

ga
gv

B(F) 4 (

- B(F), B(GT) : Fermi and Gamow-Teller transition strengths

- 1 : half life

- f : phase space factor given by the total energy released

- gv, ga : vector and axial-vector coupling constants

- K’ : empirically determined constant S, B

K’ is determined from pure Fermi transitions o | ."’;‘;o“ Rl
B F L K, :-»rn-<+ i A + , * i I -
( ) T ﬁ B(F) =N—2 0| '0.“""A.l 3,,,‘? wy 8g | R
e ft =3073.3+3.5 — K, — 6147 I 7 S ® Parart mess: noubior A

J.C.Hardy et al., Nucl. Phys. A 509, 249 (1990).
ga/gv is determined from neutron beta decay with B(F)=1 and B(GT)=3

2
o | = A
{=623.6+6.25 = (g—> = (1.2605 + 0.0075)2
gv D.H.Wilkinson, Nucl. Phys. A 377, 474 (1982).




Fermi and Gamow-Teller sum rules



Fermi and Gamow-Teller sum rules

Fermi/Gamow-Teller B* operators exciting the Fermi/Gamow-Teller states are

Fi = Zt:t,k GT*(p) = Ztk,iffp,,k
k k
Total F. and GT. strengths, S(F.) and S(GT.), are given by
S(F+) = > fIF+li)|? S(GT1) = > [fIGT+(p)|s)|?
f I
= (i|F} F[d) =Y (IGTL (1) GT+(p)li)
v

(completeness of Y _I){fl=1")

Separate sums are model dependent (shell-model, RPA, etc.).

But the difference is model independent — Only a function the neutron excess (N-2).

S(F_) — S(F.) S(GT_) — S(GT,)
= (8] > byt p — t_ sty klld) | = 3(E| Y [t4 kb — t— ktix]d)
— (N~ 7) — 3(N - 7)

Exercise: Derive these sum-rules referring

‘Note: tylp) =In) t_[n) = |p) ‘ Appendix D of this lecture.




Delay/quenching of Fermi transitions

If the Fermi transition strengths are concentrated to a transition:
- Its log(ft) value should be log[(6147 s)/(N-Z)] from the sum rule.

9.49 h
Sum rule — “5Ga +
31
log ft — 3.0 Qgc=5175
10(105)
log ft =17.9 o
stable & = 0 504% 7.9
30ZN
15.19d
r 1%y | Sum rule —

S log ft = 2.3

log ft = 9.8

32% 9.8 0+

I O(10°)

0 stable

el

B(F) = (N — Z) =

2.00d
Sum rule — oL -
log ft = 2.3| =%
I O(10°)
].Og ft — 9.8 0 0.66% 9.8
stable 1;8Yb -
4.4d
Sum rule — 234N T
log ft = 2.1 Qec=1810
10(106)
0+ log ft — 8°5 0 25% 8.5
2.455x105 y 234U » '
92

6147 s
ft

The Fermi transitions are hindered (delayed) by factors of the order of 104 to 108
—Missing strengths should exist beyond the beta-decay energy window.




Beta decays and charge exchange reactions

Beta decays (weak int.) charge-exchange (strong int.)

3~ (p, 1) p\mﬁyyn
/\ Z_l_l“ Z{/nip\)

}z +1

A — }z -1 — Yz -1

weak int. strong (nyclear) int.

’@' £ Gar?ggv;;l’)eller @0_ t_:
p<n :

’@ (Z%Tol) -: oot

Charge exchange reactions < Information on beta-decays (except for coupling const.)

l3-|—

Energy transfers by reactions — can access the highly-excited states.




Observation of IAS (Fermi resonance) by (p,n)

w
: _ A
Fermi strengths: S oF
. function
» Sum rule : summed to whole w region
- Beta decay : limited by Q value IAS - [

(p,n) reaction

- can excite the 0* (Fermi) states
by charge-exchange t_ operator.

 can populated the Ot states A Ts -1
beyond the beta-decay energy window T a1
T3:N_Z (N, Z) T, — 1
The IAS (0%) are clearly observed. 2 (N—1,Z +1)
o 800 | T I I 1 T l T I
- Isospin is a good quantum number PZrpn) En (MeV)
for N>7Z at 35 MeV and 0 C L 0 25 30
I} 600 - _
<
- Almost all strengths are concentrated g | IAS |
. o
to the IAS with Ts @ 200l |
a
(7] - -
}_.
The IAS almost exhausts S ol i
the sum-rule strength of (N-2) - n
AN
J.D.Anderson and C.Wong, Phys. Rev. Lett. 7, 250 (1961). %0 300 450
CHANNEL NUMBER

R.R.Doering et al., Phys. Rev. C 12, 378 (1975).



Landau-Migdal parameter f’ and IAS

Without residual interaction (f’=0)

« Many AJ"=0* 1p-1h states — Strengths are fragmented and lower than exp. data

With residual interaction (f’>0)
« Strengths concentrate to the high-w state & The peak also shifts to higher w
* A relatively strong f’=0.65 (repulsive) reproduces the exp. IAS position

 This f"~0.65 is roughly consistent with the value of f"~0.75 determined from GDRs

VT T T T T
2 i  Exp. IAS iti
| | 1AS of ZOBPb‘ TP e PoEen
% 25 | | =
g = T
~ [ ™ ~ ]
[ = 9 —— £'=0.25 ]
%] [ ' < | ]
2 R0 T T — f'=0.65 7
! . —— f'=1.25
O . ® >
S 15} S o< -
o L
ﬁ L
- [
Gy
10 - .
5
g : Theoretical calculations
o, 5F . were performed
4 ! with the computer code respq
a [ | - .
ol N L O by Ichimura-san.
0 5 10 15 20 25 30
Energy transfer w,,; (MeV)



Delay/quenching of GT transitions

If the GT transition strengths are concentrated to a transition:
K’ } — log [ (6147 s)

- Its log(ft) value should be log [ ] from the sum rule.

(94/9v)2B(GT) (1.261)23(N — Z)

Sum rule — W Sum rule — il qgm -

log ft — 2.8 Qg=8563.0 log ft — 1.9 Qg=1453
10(102) 10(103)

0+ log ft — 4°8 0 _82% 4.8 table OF log ft — 4°9 0 0.46% 4.9
stable ggN| - 113Cd »

Sum rule — " 0Ga Sum rule — w

log ft p— 2.]_ QEC:G(SiI"/Z log ft — 1.9 Qp=3657
10(103) 10(103)

510t y & log ft — 4'7 0 041% 47 b O log ft — 4.5 o 975% 45
30Zn o T18Sn ‘

The GT transitions are hindered (delayed) by factors of the order of 10% to 103
—Missing strengths should exist beyond the beta-decay energy window.




Observation of GTR by (p,n)

GT strengths:

» Sum rule : summed to whole w region

Strength
function

- Beta decay : limited by Q value IAS

Quenching of B(GT) (delay of GT B-decay)

- suggests the GTR beyond the
B-decay window

e  — 1

N-1Z+1

Ty — 1
Ty — 1

(p,n) reaction

- can excite the 1+ (GT) states n="2 (N2 Ty -1
2 (N-1,Z+1)

by charge-exchange ot_ operator. .
%Zr(p,n)

« can populated the 1* states at 45 MeV and 0°
beyond the beta-decay energy window 5 E, in *Nb

The GTR (1*) are observed.
e GTR takes a major part of the GT strength

|||||||| NLENS [ NN BN B B BN B BN R

w

d?c/dVdE (mbsr~! MeV-1)
2
X
5
—___

- Low-energy GT strength is quenched

—
1

R.R.Doering et al., Phys. Rev. Lett. 35, 1691 (1975).



Systematic studies at IUCF

The GT resonances were observed for medium-heavy N>Z nuclei.

- With increasing neutron excess (N-Z2), the GTR becomes more pronounced.

- With increasing incident energy Tp, the GTR becomes more pronounced

- The IAS is only weakly excited.

|7, = 45 MeV

Y

10
A(p,n) GTR
8_ ] - —
T,=200MeV  GTR ||
3 61 Oy, =0° 1| To = 200 MeV y
3 L 4F
€Y
=
@
=
™~
e
L
5
(WY
o
OF | |
2_ —
I 4OCa
0 ' I _J"ﬂ\ld\ P ' I l '
140 160 180 200 160 180 200
Neutron energy T, (MeV)

d?0/dVdE (mbsr

-

|||||||| T 1 7V T T

E. (MeV)

C. Gaarde, Nucl. Phys. A 369, 258 (1981).

R.R.Doering et al., Phys. Rev. lett. 35, 1691 (1975).



Missing GT strength

In the 0° (p,n) reaction:
GT AL=0 strength is predominantly excited (GT resonances have been observed)

But the extraction of GT strength from o(0°) has some problems:

- The strength of Lz1 would contribute beyond the GTR sF o 'Jaé;('p' n) -
— Ex is limited up to GTR (Ex~20 MeV) c < | T =160MeV |

= © 10f P . .

» The GTR bump is located on top of a continuum § % Oem =0
— This continuum is B.G. or GT ? § S sl .

S & | ‘

Minimum GT strengths have been obtained S 4 Y/ ‘
by subtracting the continuum as B.G. 0 ,00

« Continuum contributions are treated as “uncertainties” Excitation energy (MeV)

B.G. or GT 7

The summed total strength is compared with the sum rule (lkeda sum rule)
» For N>Z nuclei, Sz+ =~ 0 due to Pauli blocking

+ Sg— is compared to the sum rule value of 3(N-2)

F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992).



Missing GT strengths

Fraction of GT sum-rule strength observed in (p,n) up to 20 MeV
Only about 50-60% of the sum-rule value is found up to GTR (=20 MeV)

Uncertainties for °0Zr
+ (52 & 9)% [minimum] ~ (6777 )% [maximum]

« The maximum value — The continuum under the GTR is also the GT contribution.

About 40% strength is missing in the GTR reglon

~ RO———— 7T T T T

X |

@ 100 ----mm-mmmmm oo -

: |

g Ol '.

S el + ¢ de_| uncertainty for the continuum
an + L + + contribution below the GTR
£ s} 50% ¢t * + H
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Mass number 4 C. Gaarde, Nucl. Phys. A 396, 127¢ (1983).



Questions to be solved in the following lectures

§##8) How can we identify the resonance as Fermi (AS=0) or Gamow-Teller (AS=1) ?
{ 2 y) - How to identify the resonance as GT 1+ (not 0%) ?

What is the best energy for studying the GT strength by (p,n) ?
- The IAS was found at 35 MeV whereas the GT was found at 45 MeV.

How were the (p,n) data obtained ?

« How was the neutron measured ?

How is the (p,n) cross section converted to the GT strength ?

* The relation between ¢(0°) and B(GT)

Is the continuum below the GTR really B.G. ?

« The continuum should be subtracted? or added ?

Is there any GT strength beyond the GTR (Ex z 20 MeV) ?

- How to identify the GT L=0 strength in the continuum ?



Homework #1

1 1

1. Determine the reduced matrix element <5 H o H §> .

2. The spherical components of a unit vector 7 are defined as

1

ry, = —-E(CB +iy); ro=2z2

Express the spherical harmonics Y1m (m = x1,0)using "+1 and 7o .

3. In the y-absorption measurement, the total absorption cross section is obtained by

measuring all possible partial cross sections as

o(v) =o0(,Y)+o(v,p)+o(v,n)+---

In practice, the total cross sections for heavy nuclei (Az90) are approximately obtained as

o(v) ~ ) o(y,zn)

£r
Explain the validity of this approximation referring the Appendix A of this lecture.



Appendix A

Yy -absorption cross section



y absorption

v-absorption
A selective tool for excitation of GDR (AL=1, AT=1)

In order to distinguish nuclear from atomic processes, total absorption cross section
Is obtained by measuring all possible partial cross sections:

o(v) =o(v,Y)+o(yv,p) +o(v,n)+---

In almost all nuclei, Ex(GDR) > particle decay threshold

+ o(v,v") islow. Ey (MeV)
10 12 14 16 18 20 22 24 26 28

— T

In heavy nuclei (A =z 90), proton-emission 100 v

Is hindered by the coulomb barrier.
- o(v,p) issmall

% Ty Yy

— o(v) = 20(79 )

T




Appendix B

TRK sum rule for GDR



GDR sum rule
O(El) = —\EZtg(i)zi

$1(E1) = _(0|[0(B1), [, O(E1)]]|0)

Since O(E1) x z; , let’s consider
(0|[z, [H, 2]]|0)  (Here we omit “i” for simplicity)

In H =T 4+ V ,the potential V is a function of ¥ = (x,y,z).Thus
V,z] =0

Therefore, it is sufficient to consider:

(0][2, [T, z]]|0)



GDR sum rule

Since T = p'*/2M, we find:
(02, [H, z]]|0) = (0|[2, [5?/2M, =]]|0)

h

— D=z [pza z] + [pza z]pz — 2pz;

= 57 Ol 72,110
— 2]1\4 2h(0|[z p=]|0) =

Then, for the E1 operator:

A
O(El) = @Ztg(i)zi

the 1st moment (sum-rule) becomes:

hZ

M

$1(B1) = _ (0[[0(B1), [, O(E1)]]|0)

1 3 1
54_ZA<O|[27 [H, 2]]|0) =

isospin

3AR?

327 M

Thomas-Reich-Kuhn (TRK)
sum rule




Appendix C

Graphical solution of the 2-state model



Graphical solution

Equation of eigenvalue problem S (F

_ |
A E—€1 IE—€2 o2 — &1

1/A
= f(E) = g(c2/c1)

€ éx 562 &
Energy: E
- Intersection of f(E) and 1/

« One state has a significantly high energy

1 X12 X22 X1 X5 (Cz Cl)

Ci C2

C2=—0C, Ca2=Cy
destructive g(CZ/C 1) constructive
A '

Matrix element: c2/c1

+ Intersection of g(cz2/c1) and 1/A 1/

* One state has a constructive feature = GR

« Other state has a destructive feature & weak




Appendix D

Fermi and Gamow-Teller sum rules



Fermi operator and sum rule

Fermi 3* operator exciting the Fermi state is

Fi=) ti
k

Total F. strength, S(F.), is given by

S(Fi) =) KFIFL]i))?
f

—— Nuclear Physics Convention ——

taln) = In) talp) = — |p)
* t-|n) = |p)
* tylp) = |n)
*i_|p) =tq|n) =0

= (i|F}_ Fi|i) (completeness of Z|f)(f\ )

f

Separate sums, S(F:) and S(F.), are model dependent (shell-model, RPA, etc.).

But the difference is model independent — Only a function the neutron excess (N-2).

S(F_) — S(Fy) = (il > [trwt—p — t— sty w]ld) (- th=trn)
k

= (N — Z) model-independent
only a function of (N-2)



Total GT* strengths

Total GT* strength, S(GT.), is given by
S(GTx) = Y KfIGTL(p)|d)/?
Ay

=) (FIGT+(w)]i)* (FIGT+(p)|3)
Isu

=Y GIGTYL ()| £)(FIGT 4 (1) |4)
Isu

— Z(iIGTL(u) GTy(m)|i) (completeness of Z F)F])
I I

. |2), | f) :initial and final states

- f . runs over all GT+ states

‘In general, S(GT%) is model-dependent (shell-model, RPA, etc).‘




GT sum rule

Separate sums, S(GT.) and S(GT-), are model dependent

But the difference is model independent = Only a function the neutron excess (N-2)
S(GT_) — S(GT4)

= Y (i[GTL(1)GT_(p) — GTY (1) GT+(1)]]3)

= (1| S: S:[t—hkaz,kt—,ko'u,k — t—,kal,kt-l—,ko'u,k] 2) (- til:,k: = k)
kE n

= (il )_lojtypt—k — opt_ gt ki) (oF =D olow)
k l’l'

= 3(i ) [ty kbt — t_ptyp]ls) (o7 =3)
k
For the isospin-ladder operators:

> . _ - model-independent
S(GT-) = 5(GT4) = 3(N — Z) { only a function of (N-2)

- Assumption: Nucleons are structureless, point-like particles.



