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A powerful method to study the properties of a system 
= Measure its response to the external perturbation/impact 

Nuclear responses to real/virtual photons 
•                                        : Excitations including one or a few particles

•                                        : Broad resonances involving many particles  
•                                        : Quasi-elastic scattering (scattering with a target nucleon)  

     for (e,e’) and (p,n)    

•                                        : Δ resonance due to nucleon excitation

What is a Resonance?
M.N.Harakeh and A. van der Wunde, “Giant Resonances”.
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Resonance = Fundamental modes of nuclear vibration ( in macroscopic view). 
• shape oscillation   (compression, dipole, …)

• spin oscillation      (out-of-phase oscillation between ↑ and ↓)

• isospin oscillation (out-of-phase oscillation between p and n)


Resonances can be classified by: 
multipolarity L

• ΔL=0 : monopole

• ΔL=1 : dipole

• ΔL=2 : quadrupole


spin S

• ΔS=0 : spin-scalar  

(in-phase osc.  b/w ↑ and ↓)

• ΔS=1 : spin-vector 

(out-of-phase osc. b/w ↑ and ↓)

isospin T

• ΔT=0 : iso-scalar (IS) 

(in-phase osc.  b/w p and n)

• ΔT=1 : iso-vector (IV)  

(out-of-phase osc. b/w p and n)

What is a Resonance

M.N.Harakeh and A. van der Wunde, “Giant Resonances”.
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Graphical images of Resonances
Electric giant resonance (spin transfer ΔS=0)

B.L. Berman and S.C. Fultz, RMP 47,713(1975).

65Cu

120Sn

208Pb

Photo-neutron c.s. Isoscalar 
ΔT = 0

Isovector 
ΔT = 1

Monopole 
(GMR) 
ΔL = 0

Dipole 
(GDR) 
ΔL = 1

Quadrupole 
(GQR) 
ΔL = 2

In-Phase/Out-phase changes of spatial w.f of neutrons and protons  
for isoscalar/isovector GR

Animations: taken from presentation  
by T. Aumann @ INPC2007



Quantum mechanical description of Resonances

In quantum mechanics: 
• The resonance is a transition between the ground state and the collective state 
• Its strength is described by a transition amplitude

The transition strength depends on the basic properties of the system:

• The number of particles participating in the transition

• The size of the system 
The total transition strength should be limited by a sum rule:

• The sum rule depends only on ground-state properties


The “Giant” resonance and the sum rule: 
• A giant resonance (GT) = resonance exhausting a major part of the sum rule


• Typically more than 50%

Resonance = collective motion involving many if not all the particles in the nucleus

What is the specific form of the sum rule (E1, GT, etc.)? 

of the ground state



Sum rule



Sum-rule in quantum mechanics
Assume that the Hamiltonian       has a complete set of: 

• eigenfunctions         with

• eigenvalues


For the Hermitian operator      , we define the operator (commutator)     : 

• The operator       is anti-Hermitian:


For     , we find: 

and also:



Sum-rule in quantum mechanics

Using these relations, we can derive: 

Since                          , we find:



Sum-rule in quantum mechanics

This relation can be also described as: 

since


and the completeness relation:



GDR (TRK) sum rule
The Thomas-Reich-Kuhn (TRK) sum rule shows: 

For the E1 operator: 
 
 
The energy-weighted sum of the response function (transition strength):


should be equal to the sum rule value 


irrespective to the potential V (interaction) 

• TRK sum rule = model-independent sum rule


Giant resonance 

• A resonance which exhausts a major part of the sum-rule strength (> 50%).  
→ Observed GDR’s exhaust their sum-rule strengths?

Exercise: Derive the TRK sum rule 
referring Appendix B of this lecture.

photons

proton neutron

Nuclear physics convention



Experimental evaluation of TRK sum rule
Ratios of the experimental S1(E1) up to 30 MeV (=GDR) and the TRK sum rule: 

• The GDR strength corresponds to ～100% of the TRK sum rule.


• The GDR is a collective nuclear vibration in which all the protons move collectively 
against all the neutrons.

In general, there is the appropriate sum rule depending on ΔL, ΔS, and ΔT. 
✤ If the total strength in a limited energy region (< E) does not satisfy the sum rule.

    → Further strengths exist beyond E.

A.Bohr and B.R.Mottelson, 
“Nuclear Structure”

100%



What can we learn from GRs?
For each mode specified by ΔL, ΔS, and ΔT, the relevant sum-rule exists: 

• e.g., E1 (TRK) sum rule for ΔL=1 (dipole), ΔT=1 (isovector), and ΔS=0

• A giant resonance (GT) = resonance exhausting a major part of the sum rule


• Typically more than 50%


If the total strengths including the GR do not exhaust the sum rule: 
• Missing strengths should exists beyond the GR excitation energy 

• Some basic assumptions for the sum-rule might be wrong


• e.g., a nuclei consists of point-like protons and neutrons


What can we lean from the strength and position of GR 
• peak position

• fraction to the sum-rule

Both depend on the residual interaction in nuclei

The residual interaction dependence can be understood easily



Simple 2-states model w/o residual int.
Excite two p-h states via      (neutron → proton) 

Hamiltonian of daughter nucleus w/o residual interaction


•  


Transition matrixes via      operator

• to state 1 : 

• to state 2 : 

         and          are orthogonal

No GR w/o residual interaction (          and            are equally excited)

proton neutron

1

2

G.E.Brown, “Unified theory of nuclear models and forces” 
K.Yako, Private communication.

Transition strengths (probabilities) become

(forgetting about CG coefficients, neutron excess, etc.)



Simple 2-states model with residual int.
Add residual interaction: V  

• Hamiltonian and Schrödinger eq.: 

• Eigenstate: 


Similarity between residual interaction and p-h excitation by  

← Mixing          and          with          

repetition of  
a p-h excitation 

by      .    

Since the p-h matrix element by V is a repetition of a p-h excitation by        ,  
the matrix element can be expressed as:

(λ : strength of the residual interaction)

p-h matrix element by V p-h excitation by      



Simple 2-states model with residual int.
• Hamiltonian and Schrödinger eq.: 

• Eigenstate:

• Matrix elements :  


The secular equation/problem becomes 

•                           for 



Solution
Assumption for simplicity 

•                              (two states are degenerate)


•                    (repulsive)


Solution #1 (Low-lying state) 

•                    (not changed)

•   

Transition matrix:

Transition probability :                   (zero probability)


Solution #2 (High-lying collective state) 

•                                                     (shifted to higher energy by                            )


•  


Transition matrix : 


Transition probability :                                     (sum of all the transition probabilities) 


Both            and            contribute constructively. → “Coherent”



Summary of simple model
Inputs 

• Structure: two “unperturbed” states

• Interaction: “repulsive” residual interaction λ


Outputs 

Low-lying state

• Similar excitation energy

• Almost zero strength

High-lying state

• Higher excitation energy by

• Almost all strength (collective state)

• Oscillating between           and    


Real width of GR 
Coupling with more complicated states (2p2h)  

• Fragmentation of strength
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As an effective interaction V (λ), the Landau-Migdal interaction VLM is often used 

For isovector ΔT=1 excitations, the following two interactions contribute: 

• spin-scalar (ΔS=0) : 


• spin-vector (ΔS=1) : 


There are several choices for the strength C0:


• pionic unit       :


• Julich unit       :


• Osterfeld, etc. : 

In the following, we set                 and                for simplicity.

The Landau-Migdal interaction

: πNN coupling const.

: effective nucleon mass

: Fermi momentum

A.B.Migdal, “Theory of Finite Systems and Application to Atomic Nuclei” (1967).



Landau-Migdal parameter f’ and GDR
Theoretical calculations 

• respq by Ichimura-san

• available from RIKEN Nishina HP


Without residual interaction (f’=0) 
• Many ΔJπ=1- 1p-1h states

• Significant widths

• Significantly lower than the exp. data


With residual interaction (f’>0) 
• Strengths concentrate to the high-ω state

• The peak also shifts to higher ω

• A relatively strong f’=0.75 (repulsive)  

reproduces the exp. data reasonably well

GR distributions provide  
important information on the interaction



Fermi and Gamow-Teller transitions
The GDR is a isovector (ΔT=1) multipole (ΔL=1) mode: 

• Dipole mode with ΔL=1 and ΔS=0 (ΔJπ=1-)

• Dipole oscillation in the nuclear shape (anti-phase oscillations between p and n)


Here we concentrate on the “simplest” isovector (ΔT=1) modes: 

Simple = no change in the nuclear shape

• No-change in angular momentum (ΔL=0)

• Experimentally, dominant at q=0 for ΔL=0

Spin-vector mode with ΔS=1 (ΔJπ =1+)

• Gamow-Teller (GT) by (p,n), etc. 

• Magnetic dipole (M1) by (p,p’)

Spin-scalar mode with ΔS=0 (ΔJπ=0+)

• Fermi (F) by (p,n), etc.

Both Fermi and Gamow-Teller transitions/modes are closely related to beta decays 
→ Briefly overview the delay/quenching problem for beta decays



Beta decays
Beta decays and electron capture (EC) are symbolically written as: 

• β- decay  :

• β+ decay  :

• EC           :


The orbital angular momentum,     , carried away by the leptons is small (                ). 
•               for allowed transitions


Since leptons, e and νe, have spin       : 
The total spin S of the leptons (= spin change b/w initial and final states) is 0 or      :


• S=0 (ΔJπ=0+)  → Fermi                       : 


• S=1 (ΔJπ=1+)  → Gamow-Teller (GT)  :


•                                       : Pauli spin matrix of a nucleon


•                                       : isospin ladder operator 


•                                       : vector and axial-vector weak coupling constants
Beta decay illustration :https://ati.tuwien.ac.at/



Definitions of Fermi and GT transition strengths

The Fermi and GT transition strengths, B(F±) and B(GT±), are defined as: 

Fermi :  


GT : 


•       and          : parent and daughter states

•                       : initial spin

•                       : denote reduced matrix elements  

                        with respect to the spin and coordinate space

Determine                       .

Definition of reduced matrix elements

Hints:

Exercise

and                                             .



Beta decay strengths and rates
The connection between the beta-decay rates and the F and GT transition strengths,  
B(F) and B(GT), is simple and given by 

•                               : Fermi and Gamow-Teller transition strengths

•                               : half life

•                               : phase space factor given by the total energy released

•                               : vector and axial-vector coupling constants

•                               : empirically determined constant


K’ is determined from pure Fermi transitions 

• ft = 3073.3±3.5 →


gA/gV is determined from neutron beta decay with B(F)=1 and B(GT)=3 
• t = 623.6±6.2 s → 

D.H.Wilkinson, Nucl. Phys. A 377, 474 (1982).

J.C.Hardy et al., Nucl. Phys. A 509, 249 (1990).



Fermi and Gamow-Teller sum rules



Fermi/Gamow-Teller β± operators exciting the Fermi/Gamow-Teller states are  

Total F± and GT± strengths, S(F±) and S(GT±), are given by 

Separate sums are model dependent (shell-model, RPA, etc.). 

But the difference is model independent → Only a function the neutron excess (N-Z). 

( completeness of                             )

Note:                                                      

Fermi and Gamow-Teller sum rules

Exercise: Derive these sum-rules referring  
                 Appendix D of this lecture.                                                       



Delay/quenching of Fermi transitions
If the Fermi transition strengths are concentrated to a transition: 

• Its log(ft) value should be log[(6147 s)/(N-Z)] from the sum rule.

Sum rule →

0
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Sum rule →

The Fermi transitions are hindered (delayed) by factors of the order of 104 to 108 
→Missing strengths should exist beyond the beta-decay energy window.



Beta decays and charge exchange reactions
Beta decays（weak int.） charge-exchange (strong int.)

n → p

p → n

p n
meson

pn meson

Fermi 
(ΔS=0)

Gamow-Teller 
(ΔS=1)

p ↔ n

n → p

p → n

p ↔ n

Charge exchange reactions ↔ Information on beta-decays (except for coupling const.) 
Energy transfers by reactions → can access the highly-excited states.

weak int. strong (nuclear) int.



Observation of IAS (Fermi resonance) by (p,n)
Fermi strengths: 

• Sum rule : summed to whole ω region

• Beta decay : limited by Q value


(p,n) reaction 
• can excite the 0+ (Fermi) states  

by charge-exchange       operator.

• can populated the 0+ states  

beyond the beta-decay energy window

The IAS (0+) are clearly observed.

• Isospin is a good quantum number  

for N>Z

• Almost all strengths are concentrated  

to the IAS with T3
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R.R.Doering et al., Phys. Rev. C 12, 378 (1975).
J.D.Anderson and C.Wong, Phys. Rev. Lett. 7, 250 (1961).

The IAS almost exhausts  
the sum-rule strength of (N-Z)



Landau-Migdal parameter f’ and IAS
Without residual interaction (f’=0) 

• Many ΔJπ=0+ 1p-1h states → Strengths are fragmented and lower than exp. data 

With residual interaction (f’>0) 
• Strengths concentrate to the high-ω state & The peak also shifts to higher ω

• A relatively strong f’=0.65 (repulsive) reproduces the exp. IAS position


• This f’～0.65 is roughly consistent with the value of f’～0.75 determined from GDRs

Theoretical calculations  
were performed 

with the computer code respq  
by Ichimura-san.



00+ stable 
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Delay/quenching of GT transitions
If the GT transition strengths are concentrated to a transition: 

• Its log(ft) value should be                                                                      from the sum rule.

Sum rule →

Sum rule → Sum rule →

Sum rule →

The GT transitions are hindered (delayed) by factors of the order of 102 to 103 
→Missing strengths should exist beyond the beta-decay energy window.
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0.41%



Observation of GTR by (p,n)
GT strengths: 

• Sum rule : summed to whole ω region

• Beta decay : limited by Q value


Quenching of B(GT) (delay of GT β-decay) 
• suggests the GTR beyond the  
β-decay window


(p,n) reaction 
• can excite the 1+ (GT) states  

by charge-exchange           operator.

• can populated the 1+ states  

beyond the beta-decay energy window

The GTR (1+) are observed.

• GTR takes a major part of the GT strength 
• Low-energy GT strength is quenched

90Zr(p,n) 
at 45 MeV and 0°

IAS

R.R.Doering et al., Phys. Rev. Lett. 35, 1691 (1975).
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Systematic studies at IUCF
The GT resonances were observed for medium-heavy N>Z nuclei. 

• With increasing neutron excess (N-Z), the GTR becomes more pronounced.

• With increasing incident energy Tp, the GTR becomes more pronounced


• The IAS is only weakly excited.


Tp = 200 MeV
GTR

GTR

GTR

C. Gaarde, Nucl. Phys. A 369, 258 (1981). R.R.Doering et al., Phys. Rev. lett. 35, 1691 (1975).

Tp = 45 MeV

90Zr



Missing GT strength
In the 0° (p,n) reaction: 

GT ΔL=0 strength is predominantly excited (GT resonances have been observed)

But the extraction of GT strength from σ(0°) has some problems:

• The strength of L≧1 would contribute beyond the GTR  
→ Ex is limited up to GTR (Ex～20 MeV)


• The GTR bump is located on top of a continuum  
→ This continuum is B.G. or GT ?


Minimum GT strengths have been obtained  
by subtracting the continuum as B.G.

• Continuum contributions are treated as “uncertainties”


The summed total strength is compared with the sum rule (Ikeda sum rule) 
• For N>Z nuclei,                   due to Pauli blocking

•          is compared to the sum rule value of 3(N-Z)

L≧1 ?

B.G. or GT ?

F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992).
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Fraction of GT sum-rule strength observed in (p,n) up to 20 MeV 
Only about 50-60% of the sum-rule value is found up to GTR (≦20 MeV)

Uncertainties for 90Zr

•                       [minimum]  ～                         [maximum]


• The maximum value → The continuum under the GTR is also the GT contribution.

About 40% strength is missing in the GTR region.

Missing GT strengths

uncertainty for the continuum  
contribution below the GTR 

C. Gaarde, Nucl. Phys. A 396, 127c (1983).



Questions to be solved in the following lectures

How can we identify the resonance as Fermi (ΔS=0) or Gamow-Teller (ΔS=1) ? 

• How to identify the resonance as GT 1+ (not 0+) ?


What is the best energy for studying the GT strength by (p,n) ? 

• The IAS was found at 35 MeV whereas the GT was found at 45 MeV.


How were the (p,n) data obtained ? 

• How was the neutron measured ?


How is the (p,n) cross section converted to the GT strength ? 

• The relation between σ(0°) and B(GT)


Is the continuum below the GTR really B.G. ? 

• The continuum should be subtracted? or added ?


Is there any GT strength beyond the GTR (Ex ≧ 20 MeV) ? 

• How to identify the GT L=0 strength in the continuum ?

2
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Homework #1
1. Determine the reduced matrix element                       .


2. The spherical components of a unit vector       are defined as  
 
 
Express the spherical harmonics            (                        ) using            and        .


3. In the γ-absorption measurement, the total absorption cross section is obtained by 
measuring all possible partial cross sections as  
 
 
In practice, the total cross sections for heavy nuclei (A≧90) are approximately obtained as  
 
 
Explain the validity of this approximation referring the Appendix A of this lecture.  



Appendix A
γ-absorption cross section



γ absorption
γ-absorption 

A selective tool for excitation of GDR (ΔL=1, ΔT=1)


In order to distinguish nuclear from atomic processes, total absorption cross section 
is obtained by measuring all possible partial cross sections: 

In almost all nuclei, Ex(GDR) > particle decay threshold

•                    is low.

In heavy nuclei (A ≧ 90), proton-emission  
is hindered by the coulomb barrier.

•                   is small

Eγ (MeV)
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Appendix B
TRK sum rule for GDR



GDR sum rule

Since                          , let’s consider 

In                             , the potential        is a function of                           . Thus 

Therefore, it is sufficient to consider: 

(Here we omit “i” for simplicity)



GDR sum rule
Since                           , we find: 

Then, for the E1 operator: 

the 1st moment (sum-rule) becomes:

isospin

sum for i (1～A)
Thomas-Reich-Kuhn (TRK) 

sum rule



Appendix C
Graphical solution of the 2-state model



Graphical solution
Equation of eigenvalue problem 

Energy: E 
• Intersection of            and

• One state has a significantly high energy


Matrix element: c2/c1  
• Intersection of                  and

• One state has a constructive feature → GR

• Other state has a destructive feature → weak



Appendix D
Fermi and Gamow-Teller sum rules



Fermi operator and sum rule
Fermi β± operator exciting the Fermi state is  

Total F± strength, S(F±), is given by 

Separate sums, S(F+) and S(F-), are model dependent (shell-model, RPA, etc.). 

But the difference is model independent → Only a function the neutron excess (N-Z). 

( completeness of                    )

model-independent 
only a function of (N-Z)

Nuclear Physics Convention

•   
•   
•  



Total GT± strengths
Total GT± strength, S(GT±), is given by 

•                 : initial and final states

•                 : runs over all GT± states

(completeness of                    )

In general, S(GT±) is model-dependent (shell-model, RPA, etc).



Separate sums, S(GT+) and S(GT-), are model dependent 

But the difference is model independent → Only a function the neutron excess (N-Z) 

For the isospin-ladder operators:


• Assumption: Nucleons are structureless, point-like particles.

model-independent 
only a function of (N-Z)

GT sum rule


