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Neutron measurements



(p,n) reactions
Two different techniques for analyzing intermediate-energy neutron momentum: 

Charge-exchange method: 
• Transfer the neutron momentum to a proton via a secondary (n,p) reaction.

• Measure the recoiled proton momentum in a conventional spectrometer.


Time-Of-Flight (TOF) method: 
• Measure the neutron TOF by detecting its arrival time at a hodoscope. 

• Flight path length L is fixed and typically L ≧ 100 m.
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SYSTEMATICS OF 0 NEUTRON PBODUCTION BY 800 MeV. . .

FIG. 1. Plan view of the experimental setup used for the present measurements. The targets were mounted at the
location indicated by LD2 in the figure.

rotateble target wheel which was used to position
any one of the targets in the 800-MeV proton beam
from the Clinton P. Anderson Meson Physics Facil-
ity (LAMPF). A plan view of the experimental
setup is shown in Fig. 1. After passing through the
target, the proton beam is deflected through 60'
and transported to a heavily shielded beam dump
several meters away. Neutrons emerging at 0'
were collimated to a cone of half angle 0.1' and
after passing through the clearing magnet M1 en-
countered a liquid hydrogen radiator of thickness
0.93 g/cm' placed upstream of a multiwire propor-
tional chamber (MWPC) spectrometer.
The basic technique used to deduce the momen-

tum spectrum of the neutrons is to measure the
spectrum of protons elastically scattered near 0'
into the acceptance of the spectrometer, then to
take into account the cross section for this pro-
cess as a function of incident neutron momentum.
Corrections and complications which arise in using
this technique are as follows: (1) inelastic pro-
cesses in the radiator leading to a proton in the
final state, primarily pion associated protons from
the reactions np -Pnvo and np -ppw; (2) processes
leading to other charged particles in the final
state, arising from reactions such as np-dm' and
np-dp; (3) events originating in material other
than the LH, target (i.e. , the target flask and vac-
uum jacket as well as the scintillator S1 placed in
the neutron beam); (4) knowledge of the np scatter-
ing cross section as a function of momentum and
angle.
Before discussing the points mentioned above,

we first describe the MVfPC spectrometer used to

measure the proton momentum spectrum. The
spectrometer consists of a large dipole magnet,
(M2), four horizontal-vertical (Y-X) pairs of
MWPC's (Wl-W4) and two thin scintillators (Sl,
S2). The scintillators were positioned just before
S'1. and just after 5"4, respectively. An event is
accepted for pxocessing when signels from the two
scintillators and at least three out of four of both
the X and Y chambers are in coincidence. Data
recorded for each event include: (1) the time of
flight of the particle over the 4.9-m distance be-
tween Sl and S2, (2) the ti.me of the event with re-
spect to the 5-nsee microstructure of the proton
beam, (3) pulse heights in both Sl and S2, and (4)
addresses of active wires in each of the chambers
which participated in the event. The wire address-
es enable a determination of the charged particle.
trajectory before and after deflection in the mag-
net. Since the magnetic field is well known, the
path of the particle through the spectrometer can
be reconstructed and its momentum deduced, even
in the absence of one X and one F plane. The re-
solution of the momentum determination is about
1% ~WHM.
The geometric acceptance of the spectrometer

is limited vertically by the magnet pole pieces and
horizontally by the edges of S"3 and 8'4. For a
given magnet current there is a safe region in mo-
mentum and in the coordinate space of polar and
azimuthal angles e and p in whi, ch the particle tra-
jectory is certain to intersect the active region of
each chamber and in addition to avoid striking the
magnet poles. The vertical limits on the accept-
ance were determined to be sin8sing ~ 0.02. The

Neutron charge-exchange facilities
Neutrons are converted to protons by 1H(n,p) and protons are analyzed/measured. 

Advantage:

• Enable (p,n) studies where long TOF paths are not feasible.

Disadvantage:

• Final energy resolutions are limited to about 1 MeV.

• Difficult to measure polarization transfers.

LAMPF/NPL Tn ≦ 800 MeV, θ = 0° TRIUMF/CHARGEX

B.E.Bonner et al., Phys. Rev. C 18, 1418 (1978).
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R.Holmer,  
Can. J. Phys. 65, 588 (1987).

can overcome by TOF method



Neutron TOF facilities
Neutron energies are determined by measuring their time-of-flight (TOF).

IUCF Tn = 50-200 MeV, LTOF = 100 m, θ = 0°-100° LAMPF/WNR Tn ≦ 800 MeV, LTOF = 250 m, θ = 0°-9°

LAMPF/NTOF Tn ≦ 800 MeV, LTOF ≦ 620 m, θ ≦ 27° Tn ≦ 400 MeV, LTOF ≦ 100 m, θ ≦ 40°RCNP/NTOF

X,Y.Chen et al., Phys. Rev. C 47, 2159 (1993). H.Sakai et al., Nucl. Instrum. Methods 369, 120 (1996).
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III. Detectors

To establish a scale of reference for comparison
with charged particle spectroscopy, consider that a
50 m2 (typical) solid state detector at 22 cm
(typical) from the target subtends about 1 msr. At
100 m, the same solid angle would imply a detector
area of 10 m2. The problem is further exacerbated
by the fact that neutron detectors are less than 100%
efficient. The obvious imperative is to make detec-
tors as large as possible, but one must be careful
not to degrade the time resolution in the enlarge-
ment, lest one lose faster than one gains by
requiring yet longer flight paths to compensate for
the loss of time resolution.

The attainable time resolution for neutron
detection with rf timing is about 0.5 ns. Light trav-
els about 10 cm in plastic scintillator in 0.5 ns.
Therefore, we cannot ignore the time distribution
introduced by the range of geometrical light paths
when the scintillator has a dimension comparable to
or larger than 10 cm. In general, if the scin-
tillator is large, the measured time of detection of
a neutron depends on the position at which the scin-
tillation event occurs. Since we must make detectors
larger than those for which we can ignore position
effects, we are left with two possibilities, 1)
measure the scintillation position and record it
along with the time data for later correction, or 2)
use a compensation technique.

We are not now equipped to handle the complexity
of recording both the position and time, so we are
using analog compensation techniques. One form of
time compensation is described in detail elsewhere.6'7
We provide a brief description here.

In a long scintillator the light path length, s,
from a scintillation to the phototube depends on the
angle, 9, that the ray makes with respect to the scin-
tillator axis. If x is the axial distance to the
phototube, s = x/cos e, and the time, t = nx/c cose,
where n is the index of refraction, and c is the
velocity of light in vacuum. The light begins to
arrive at time to = nx/c and, were the light flash
instantaneous, would continue to arrive until tmax =
nx/c cosemax, where 9max is the angle at which
total reflection no longer takes place at the scin-
tillator surface (see ref. 6). The light arrival
profile is altered by the finite decay time of the
phosphor (about 2.4 ns).

Figure 5a shows how the light arrival profile
changes with scintillation position. The parameters
assumed are n = 1.6, the scintillator length is 1 m
and the decay time 2.4 ns. Tilting the detector with
respect to the neutron direction alters the relative
time displacements of the curves for different posi-
tions. In particular, we can choose the tilt angle
so that the curves for different positions start at
the same time point as shown in fig. 5b. Physically,
what has been done is to choose the ratio of neutron
path to photon path so that the summed times are
independent of position. Under this condition, which
can, apply exactly only for a particular neutron
energy, one achieves detection pulses that have the
correct time origins, but have different shapes. It
is then necessary to compensate for discriminator
triggering time variations that occur as a result of
shape differences.
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Fig. 5. Light arrival profiles for head on and
tilted scintillator orientations.

It can be shown that constant fraction timing is
not logically correct in such a situation and we use,
instead, what we call quadratic extrapolated zero
timing. To understand this extrapolation, consider a
Fourier series expansion of the pulse shape. The
height as a function of time can be written as

h(t) = Ao + A1cos(t/a) + A2cos(2t/a) + ......

where we have ignored terms in sin(nt/a) because we
require that h(o) = (dh/dt)o = 0. If the risetime
is near the bandwidth limit,

h(t) % A [1 - cos(t/a)],

which for small t is h(t) t A(t/a)2. This
expression can be inverted to t(o) t(h)-[t(4h)-t(h)],
which is independent of both A and a. We obtain t(o)
experimentally by using two discriminators set
respectively at h and 4h and generating analog
signals for the lower level crossing time and the
time difference with time-to-amplitude converters
and subtracting the difference signal from the lower
level signal. A block diagram of the electronics is
shown el sewhere.7

We have achieved subnanosecond time resolution
with tilt compensation and quadratic extrapolated zero
timing with a 15 x 15 x 100 cm scintillator viewed by a

single 5" phototube. Folding in the efficiency, we
find that such a scintillator has an effective area
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the longitudinal and transverse channels [16]. The in-
herent ambiguities in the (p, p') data and the consequent
importance of obtaining corresponding pure AT = 1 data
in the nuclear continuum region provided the motivation
for the present experiment.
In this article, we report the first measurement of

a complete set of polarization-transfer observables for
quasifree (g7, n) reaction. s on zH, C, and Ca. The mea-
surements were made at a bombarding energy of 495 MeV
and a laboratory scattering angle of 18', with a resultant
momentum transfer of q~sb = 1.72 fm at the peak of
the quasifree distribution. These correspond very closely
to the kinematic conditions of the original (p, p ) exper-
iment [6, 7]. The measured polarization-transfer observ-
ables and cross sections are used to construct quantities
proportional to the spin-longitudinal and spin-transverse
responses. The effects of distortions and other reaction-
mechanism complications are assessed by comparing the
C and Ca results to the electron scattering responses and
to the 2H(p, n) observables measured in this experiment.
Finally, our results are compared to random phase ap-
proximation (RPA) responses that incorporate surface
effects [17]. A brief description and analysis of the ra-
tio of the AT = 1 spin-longitudinal and spin-transverse
responses BL,/RT has been published in a previous Letter
[18].

II. EXPERIMENTAL METHODS

The data presented here were obtained with the
Neutron Time-of-Flight (NTOF) facility at the Clinton
P. Anderson Meson Physics Facility (LAMPF) in Los
Alamos. These data represent the first measurements
of polarization-transfer observables with the NTOF fa-

cility. A detailed report concerning the calibration and
operation of the detector system is in preparation. In the
following sections we present a brief description of the de-
tector system and discuss experimental details most rel-
evant to the present experiment. A schematic layout of
the pertinent beam lines, magnets, and detector system
is presented in Figs. 1 and 2.

A. Proton beam

The polarized proton beam was provided by a new Op-
tically Pumped Polarized Ion Source (OPPIS) [19]. The
beam was delivered in macropulses with a length of ap-
proximately 725 ps and a repetition rate of 36 Hz. Within
each macropulse, the beam was chopped and bunched
to provide a separation between beam micropulses of
160/(805 MHz) = 198.8 ns. The polarization of the beam
was cycled through the sequence (+,U,—,U) at 3 min
intervals. The "+" and "—"are normal and reversed
polarization states of the spin direction being delivered.
The "U" state is unpolarized and comprised 16% of the
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p BEAM STOP

NTBMS

TSO
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FIG. 1. Layout of important beam-line components (not
to scale). The EP and NT beam lines are separated by a
bend angle of 28'. The NT beam line bends by an additional
angle of 5.5' at the NTBM1 magnet position. At the target
position, the neutron Bight path comps off at an angle of 12.5'
with respect to the straight-through line to the beam stop.
The solenoid magnet NTSO and sweep magnet NTBM6 are
separated by a cylindrical iron neutron collimator imbedded
in a concrete shield wall.

FIG. 2. Schematic of the NTOF detector system. The
front pair of detector planes (NAO, NA1) serve as neutron po-
larization analyzers and are separated from the back pair of
planes (NCO, NC1) by a distance of 1.4 m. Thin scintillators
(CAO, CA1—not shown in the perspective view) are used to
tag charged particles. The long axes of the detector cells
in planes NAO and NC1 are oriented vertically. The de-
tector coordinate system (z, y, z) corresponds to the system
(—8', N', L') for scattering —to beam right.

H. Sakai et al. / Nucl. Instr. and Met& in Phys. Res. A 369 (1996) 120-134 121 

P,v, and PL are needed and the neutron polarization of Ps,, 
P,v,, and Pc' have to be measured by a neutron polarimeter. 
Since the scattering by the PL, beam does not produce any 
left-right asymmetry due to parity conservation, one needs 
a means to rotate the PL' polarization into either Ps,, or PN' 
polarization. 

Recently the RCNP facility has been upgraded by 
bringing the new Ring cyclotron with K = 400 MeV into 
operation. The existing AVF cyclotron with K = 140 MeV 
is used as the injector. In the previous facility much effort 
had been devoted to the measurement of the transverse 
polarization transfer coefficient D~N for the (p, n) reaction 
at zero degrees [2,3]. Targets ranging from 2H to 9°Zr have 
been studied over the bombarding-energy range of 50 to 
80 MeV [4-7]. Based on accumulated experience we have 
designed and constructed the facility to measure the 
complete polarization transfer coefficients for the (p, n) 
reaction. 

Fig. 2 shows a schematic drawing of the new facility 
which consists of the neutron experimental hall (N-ex- 
perimental hall) and the 100 m neutron flight path for the 
time-of-flight (TOF) experiment. In addition to the polar- 
ized beams the major equipment required for the complete 
polarization transfer measurement are the two beam line 
polarimeters (BLPI and BLP2), the neutron spin rotation 
magnet (NSR) and the neutron polarimeter (NPOL2). 

2. Beams for the (p, n) measurement 

2.1. Preparation o f  the beam for  injection into the Ring 
cyclotron 

The quality of an extracted beam from the Ring cyclo- 
tron is largely determined by the quality of an injected 

beam. The time structure, particularly the width, and the 
phase stability of the beam burst are important elements 
for the time-of-flight (TOF) measurement since they partly 
determine the final attainable energy resolution of neu- 
trons. 

A beam burst width of 300-400 ps is routinely obtained. 
A narrow beam pulse width such as 150 ps can be attained 
by reducing RF phase acceptance angle by slits in the 
injector cyclotron but it sacrifices the beam intensity. Note 
that the repetition rate of the beam is typically 12- 
17 MHz. 

The time reference signal (RF) for the TOF system is 
directly taken from a pickup attached to a D-resonator of 
the AVF cyclotron. The phase stability of the beam with 
respect to RF is continuously monitored by using a fast 
scintillation detector signal of the beam line polarimeter 
which will be described later. The phase drift of the beam 
is typically less than 100 ps over a few days and measure- 
ments of this drift may be used to correct the RF-beam 
phase shift in the off-line analysis. 

Beam burst selection of 1 /2 -1 /9  enables a reduction of 
the wrap around of slow neutrons from preceding beam 
bursts. The beam pulsing device, not shown in Fig. 2, is 
located in the injection beam line between the injector AVF 
cyclotron and the main Ring cyclotron. This device was 
previously used in the F-beam line for the study of the 
in-beam ",/-ray spectroscopy [8]. A small modification was 
made when it was installed into the injection beam line of 
the new facility. A spill of protons into unwanted time 
buckets is typically less than 0.1%. 

Two superconducting solenoids SOL1 and SOL2 are 
also positioned in the injection beam line to rotate the 
beam polarization from the normal (N) direction into a 
sideways (S) direction. These two solenoids which were 
also previously used in the former experimental halls [9] 
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Fig. 2. Schematic layout of a major part of the facility for the (p, n) polarization transfer measurement at RCNP (not to scale). 

C.D.Goodman et al.,  
IEEE Trans. Nucl. Sci.  

26, 2248 (1979).

D.A.Lind,  
Can. J. Phys.  

65, 637 (1987).
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TOF spectra and Neutron detection efficiency
Typical TOF energy spectra for 14C(p,n)14N at 80-650 MeV and 0 degrees 

Detection of fast neutrons with good energy resolutions: 
• Accomplished with relatively small detector volume (for good timing resolution in TOF).

• Detection efficiency ε < 100%


Efficiency ε should be determined to derive cross sections: 
Exercise/Homework:  
  Explain how the neutron detector’s efficiency is determined by referring Appendix B.
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Good energy resolutions 
• 200 keV at Tn ≦ 200 MeV

• 650 keV at Tn = 650 MeV

J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).

Note: Other typical (p,n) 
spectra for light, medium, and 
heavy nuclei are given in 
Appendix A.



Proportionality between  
(p,n) cross section and B(GT)



Empirical proportionality between (p,n) σ(0°) and B(GT)

For low-lying GT states, following two values were measured. 
• Beta decay transition strengths : B(GT)

• Cross sections by (p,n) at 0° (q～0)


Empirical proportionality has been found/established. 

•                 : GT unit cross section (proportionality coefficient) 
                  A-dependent (and Tp-dependent)


•                 : (q,ω) correction factor (F(0,0)=1)156 T: N. Taddeucci et al. f 7?te (p, n) reaction 
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Fig. 24. Cross section spectrum for 26Mg(p, n) at 0” and 120 MeV. The vertical bars represent the CT 
transition strengths for analogous beta decays. The Fermi strength is indicated by the dashed vertical line. 
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Fig. 25. Cross’section spectrum for 27Al(p n) at 0” and 120 MeV. The vertical bars represent the GT , 
transition strengths for analogous beta decays. The Fermi strength is indicated by the dashed vertical liine. 

transition strength obtained from beta-decay ft values. The Fermi strength is rep- 
resented by a dashed vertical line. The relative sizes for the GT and F bars was 
obtained according to eq. (5.lI). 

An important concern in the discussion of proportionality is the range of transition 
strengths over which the relationship is valid. The proportionality must obviously 
fail when the L = 0 central interaction amplitude becomes so weak that competing 
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transition strength obtained from beta-decay ft values. The Fermi strength is rep- 
resented by a dashed vertical line. The relative sizes for the GT and F bars was 
obtained according to eq. (5.lI). 

An important concern in the discussion of proportionality is the range of transition 
strengths over which the relationship is valid. The proportionality must obviously 
fail when the L = 0 central interaction amplitude becomes so weak that competing 
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Proportionality between (p,n) σ(0°) and B(GT)
Experimental results for the GT transitions in p-shell nuclei 

Proportionality between (p,n) σ(0°) and B(GT) has been established.

T.N.Taddeucci et al., Nucl. Phys. A 469, 125 (1987).



Missing GT strength problem
Experimental verification of GT sum rule 

Experimental (p,n) cross section up to GTR  
is converted to B(GT)

•  

• Beyond GTR, L≧1 excitations  

would be dominant → excluded.


Fraction of GT sum-rule strength 
Experimental S(GT-) = 50-60% of 3(N-Z)

• 3(N-Z) is the minimum value  

in the case of S(GT+)=0.

→ missing GT strength problem

C. Gaarde, Nucl. Phys. A 369, 258 (1981).



Theoretical solutions for  
the “missing GT strength” problem



Quark-degree (Δ-isobar) effect 
A nucleon is assumed as a bag of three quarks.

GT ΔS=ΔT=1 transition can excite nucleon (N) to Δ-isobar (Δ).


If the coupling between p-h and Δ-h is strong

• p-h excitations of GTR in ω～10 MeV mixed with Δ-h excitations at ω～300 MeV


Coupling is repulsive.

• GTR strength is moved to Δ-h excitation region → GTR strength is quenched.


Two possible mechanisms for GT quenching effect

✤ no Pauli blocking for Δ excitation

✤ large number of Δ-h configurations


↓

able to bridge Δω=300 MeV

proton (uud) 
1/2+

Δ++ (uuu) 
3/2+

G.F.Bertsch and H.Esbensen, Rep. Prog. Phys. 50, 607 (1987).



Two possible mechanisms for GT quenching effect

Configuration mixing effect 
1p-1h excitations mix with 2p-2h excitations

• GTR strength is moved to the continuum beyond GTR.


Theoretical prediction for B(GT) of 90Zr(p,n) 
GTR < 10 MeV (NOT shown )

• ～50% of sum-rule


Coupling to 2p-2h configurations

• ～50% of sum-rule


G.F.Bertsch and I.Hamamoto, Phys. Rev. C 26, 1323 (1982).

490 M. Ichimura et al. / Progress in Particle and Nuclear Physics 56 (2006) 446–531

Fig. 18. 2p2h excitation processes in GT excitation of even–even nuclei.

Fig. 19. Typical diagrams of second-order configuration mixing constructed from the absolute square of the amplitudes in
Fig. 18. The imaginary parts, taken at intermediate states denoted by the dot-dashed lines, contribute to the GT transition
strength.

about 50 MeV by second-order configuration mixing with Michigan 3-range Yukawa (M3Y)
interactions [133] and demonstrated that about 50% of the total GT strength could be shifted
into the 10–45 MeV excitation region for 90Zr, as will be seen in the histogram in Fig. 23. If
this mechanism is a key mechanism of the quenching, appreciable GT strength should be found
experimentally in the high excitation region up to about 50 MeV. The experimental investigation
of this shift is discussed in Section 7.
Based on the same philosophy as second-order configuration mixing, various methods

extending beyond the RPA have been applied to the GT strength distributions, such as dressed-
particle RPA (DRPA) [134] and extended–renormalized RPA [135]. These methods include
2p2h-type correlations as self-energies, vertex corrections, and others on top of the RPA. We
do not detail them here.

6.3.2. Mixing of∆–hole states
The second of the two quenching mechanisms is∆h admixture in the GT states, which shifts

the GT strength partially from the ph region to the ∆h region. This invalidates the nucleon GT
sum rule (2.12), since the assumption that nuclei consist only of nucleons is violated.
Initially, effects due to ∆ were treated as being part of the exchange currents [136,137]. At

the beginning of the 1970s, quenching of the axial vector weak coupling constant g′
A in nuclear

medium was investigated [126,138–141] on the basis of the partially conserved axial current,
which is closely related to the pion propagator in nuclei and is thus strongly affected by ∆h
excitations. However, the estimated effects on g′

A were not as large as the newly measured
quenching shown in Fig. 3.
After the GT sum rule problem had been reported, the role of ∆ was again highlighted by

many authors [69,142–148], who also attributed the quenching to ∆ mixing (see details in
Refs. [6,7]). However, the new estimate of ∆h mixing differed from the old estimate in that
different coupling strengths between the ph and∆h states were used. In the same way, quenching
of magnetic transitions was also attributed to ∆h mixing [149–151].

1p-1h

2p-2h

p p hh

Separation/identification of B(GT) in continuum (ω>20 MeV) is important.

BRIEF REPORTS 1325

fit with a two-term Yukawa. The fit is insensitive
to the range of the short-range term, and we have
taken

12
Vr(q) =— (3trt qo.2 q —at o.2q )f

m~ 3

TABLE I. Contributions to Gamow-Teller strength in

the region 10—45 MeV excitation in Zr, P(E) dE, with
10P (E) defined in Eq. (4). The partial sums need not add to

the total because of possible coherence of amplitudes.

1 089
m 2+q2 m 2+q2 (3)

JP Graphs (a) + (b) Graphs (c) + (d) Total

Both direct and exchange matrix elements of the in-
teraction must be included to reproduce the G-matrix
elements. The matrix elements between shell model
states are computed in momentum space, using the
formulas of Ref. 14. [The equation following (Al)
in Ref. 14, for a, , should include a phase

(—1)" ' "'.]
The strength function can be formally written as

I/m times the imaginary part of the response func-
tion, which allows one to see that the only graphs
contributing to the strength function at E = e~ +e,
—eh —&, can be expressed as the square of the sum

h

of the four amplitues shown in Fig. 3. We included
in the calculation all of the 2p-2h states that can be
excited in Figs. 3(a) and 3(b), and only computed
Figs. 3(c) and 3(d) for these states. There are
roughly 20000 states that need to be considered in
the 10—45 MeV excitation energy range. In Table I
the total strength for this region is tabulated, broken
down by type of interaction and graph. We see that
the central and tensor interactions are roughly of
equal importance, and that they add incoherently to
the strength. We also see that the separated ground
state correlation contribution is somewhat smaller
than the final states correlation contribution, and
these tend to also add incoherently.
The distribution of strength with excitation energy

is shown in Fig. 4. The strength function P(E) is
defined with a normalization of 1, i.e.,

Tensor
Central
Total

0.13
0.25
0.38

0.06
0.15
0.20

0.20
0.36
0.56

P = ' =0.016/MeV .
35

This would make a significant background in the
(p, n ) reaction. According to Fig. 7 of Ref. 3, the 0'
cross section for the 200 MeV (p, n ) reaction should
have a value of

GT

dQ 0.
= (5 mb/sr)(i Io.r I f )'=150 mb/sr

The abscissa in Fig. 4 shows excitation energy
with respect to the ground state in 9 Nb. The
Gamow-Teller peak, which is well reproduced by
TDA theory, would lie just off the figure on the left.
However, our perturbative calculation does not in-
clude the collective energy shift, and so we would un-
derestimate the strength in the region around 10
MeV excitation. If the calculated strength function
were smoothed out to compensate for spreading
widths and the discretized single-particle spectrum,
the strength would decrease from P =0.025/MeV at
E = 10 MeV to P =—0.011/MeV at E =45 MeV,
with an average value

P(E) =
X&iIar If )'B(E—E;()f
$ &t I ~r I f )'f

(4)
for Zr. This is the full Gamow-Teller strength, as-
suming no 5 mixing, etc. The Q mismatch at 30
MeV excitation energy reduces this cross section by a
factor 0.60. Our calculation then predicts that the

h p h p O.l

P(E)
0.05

(a) (b) (c)

0
lo

J
20 50

E (Mev)
40

FIG. 3. Four types of amplitude included in the actual
calculation. (a) should of course also include the graph with
h and h' interchanged.

FIG. 4. Calculated strength distribution P(E) for the
Gamow-Teller operator in Zr. Energies are measured with
respect to the ground state of Nb.

GTR is quenched by ～50% 
due to configuration mixing

significant GT strength beyond GTR 
due to configuration mixing



The “original” Landau-Migdal interaction VLM is: 

• VLM is a zero-range interaction


For GT (ΔS=ΔT=1) excitation, the following spin-isospin term contributes: 

spin-isospin (ΔS=ΔT=1)  : 


• pionic unit :


The Landau-Migdal interaction can be extended to include Δ as:

we set                

The “extended” Landau-Migdal interaction

: πNN coupling const.

: πNΔ coupling const.

A.B.Migdal, “Theory of Finite Systems and Application to Atomic Nuclei” (1967).

coupling b/w  
p-h states

coupling b/w  
p-h and Δ-h states

Two Landau-Migdal parameters,              and             



Two possible mechanisms and LM parameters

Quark-degree (Δ-isobar) effect 
Assumption:                               (universality ansatz)

Coupling between p-h and Δ-h is large (strong repulsion) 

• Significant GT strengths move to Δ region (ω～300 MeV)


• GTR strength is quenched


Configuration mixing effect 
In microscopic calculations, 


• One-boson ex. model by Arima et al., and Towner et al. 
• G-matrix calc. by Dickhoff et al. and Nakayama et al. 

Coupling between p-h and Δ-h is small (weak repulsion) 
• Strength-shift to Δ region is small

• GTR strength is quenched by configuration mixing

Landau-Migdal interaction with N and Δ: 

p-h

～10 MeV ～300 MeV

Strength

E

GR
Quenching

～ ～

Δ-h

～10 MeV ～40 MeV

Strength

E

GR
Quenching

2p-2hp-h



g’NN and g’NΔ dependences on GTR
Landau-Migdal interaction at q=0 

LM parameter g’NN 
Determine the p-h repulsion

Larger g’NN → Stronger repulsion

• Peak shifts to higher ω

• Collectivity becomes large


LM parameter g’NΔ 
Determine the coupling to Δ

Larger g’NΔ → Stronger coupling

• Strength becomes small (quenched) 

[Strength moves to Δ region]

repulsion between

particle and hole (ph)

coupling between

ph and Δh

re
pu

ls
iv

e
re
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e

T.W. et al., Phys. Rev. C 72, 067303 (2005). 



Multipole decomposition analysis



There would be GT ΔL=0 strength: 
• below the GTR

• beyond the GTR


Extraction of  these GT strength in the continuum: 
Assumption:

• The measured cross section at an energy transfer ω 

is a coherent sum of cross sections from several ΔL


•         : relative strengths of the individual multipoles

Note: 
• In practice,          is expressed as an incoherent sum of c.s. from several ΔJπ as


• In general, the possible three ΔJ=ΔL±1, ΔL members for a ΔL are grouped  
because of the small ΔJ dependence.

L≧1 ?

B.G. or GT ?

How to extract the GT strength in the continuum

Here, we express           as a incoherent sum of cross sections from several ΔL for simplicity.

Cr
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How to extract the GT strength in the continuum

Because          should be independent of angle θ, angle dependence can be expressed as 

If angular distributions (θ-dependences) of               and               are significantly different,  
relative strengths          can be determined by a χ2 fitting.

Assumption:

angular-distribution 
of ΔL=1 cross section

angular-distribution 
of ΔL=0 cross section

experimental 
data



ΔL dependence on cross section
The (p,n) reaction mainly occurs around the nuclear surface (∵ strong absorption) 

The angular momentum transfer, ΔL, is related to momentum transfer, q, and  
nuclear radius, R, as


The momentum transfer q is expressed with the incident momentum pin and scattering 
angle θ as:


From ① and ②, we get


Thus, the cross section takes a maximum at θ depending on ΔL.


Expectations for 208Pb(p,n) at 200 MeV 
• pin = 640 MeV/c

• R ≒ 1.1A1/3 × 80% ≒ 5 fm

208Pb(p,n) θ
ΔL=0 0°
ΔL=1 4°
ΔL=2 8°Angular distributions would be strongly depend on ΔL

…①

…②



Comparison between experimental angular distributions and DWIA calculations. 
Angular distributions are characterized by angular momentum transfer ΔL.

• Peak positions shift to larger angles w/ increasing ΔL as expected.

Experimental angular distributions are well reproduced by DWIA calculations.

Angular distributions in DWIA

systematic uncertainty in the ðp; nÞ spectra is estimated
to be 12%, which includes contributions from the thick-
nesses of the 48Ca (10%) and 7Li targets (3%), beam
integration in the Faraday cup (2%), and the 7Liðp; nÞ cross
section [17] used for calibrating the efficiency (5%). The
systematic uncertainty in the ðn; pÞ spectra is 4%, where
the main contributions are the target thicknesses (3%) and
the nþ p cross sections obtained from the phase-shift
analysis (2%) [18].

The !L ¼ 0 component of the cross section at 0% was
obtained by subtracting the 1 & !L & 3 components by
means of MD analysis. In MD analysis, the experimentally
obtained angular distributions !exptð"; ExÞ at "< 12% were
fitted using the least-squares method with the following
linear combination of calculated angular distributions:

!calcð"; ExÞ ¼
X

!J#
a!J#!

calc
;!J#phð"; ExÞ: (4)

Here, the variables a!J# are fitting coefficients [9]. The
calculated angular distributions for each angular momen-
tum transfer !calc

;!J#phð"; ExÞ are obtained using distorted

wave impulse approximation (DWIA) calculations.
The DWIA calculations were performed with the com-

puter code DW81 [19] for the following J# transfers:
1þð!L ¼ 0Þ, 0', 1', 2'ð!L ¼ 1Þ, 2þ, 3þð!L ¼ 2Þ, and
4'ð!L ¼ 3Þ. Each one-body transition density was calcu-
lated from a pure one-particle–one-hole (1p1h) configura-
tion. The ð1f7=2; 1f'1

7=2Þ, ð1f5=2; 1f'1
7=2Þ, ð2p3=2; 2p

'1
3=2Þ, or

ð2p1=2; 2p
'1
3=2Þ configuration was used to calculate the GT

transition. For transitions with!L ( 1, the active particles
were restricted to the 1f, 2p, 1g, 2d, 3s, or 1h11=2 shells,
while the active holes were restricted to the 1p, 1d, 2s, or
1f7=2 shells. The optical model potential parameters were
taken from Ref. [20]. The effective NN interaction was
taken from the t-matrix parametrization of the free NN
interaction by Franey and Love at 325 MeV [21]. We note
that DWIA calculations based on this parameter set better
reproduce the polarization transfer DNNð0%Þ for the
90Zrðp; nÞ reaction at 295 MeV than those based on the
t-matrix parametrization of NN data at 270 MeV [10]. The
radial wave functions were generated from aWoods-Saxon
potential with the radius parameter of R ¼ 1:24A1=3 fm
and the diffuseness of a0 ¼ 0:63 fm [22]. The details of
MD analysis as well as the reaction mechanism in the
continuum are discussed in Ref. [9].

Some notable angular distributions in the 48Caðp; nÞ
channel are shown in Fig. 2. Figure 2(a) shows the angular
distribution of Ex ¼ 2:6 MeV (2:5<Ex < 2:7 MeV) en-
ergy bin dominated by the first 1þ state in 48Sc at 2.5 MeV.
The 1.0 MeV bin [Fig. 2(b)] contains transitions to
2þð1:14Þ and 7þð1:10 MeVÞ, showing a small but finite
cross section at 0%. By contrast, the angular distribution at
0.0 MeV, which contains 5þð0:13Þ and 6þð0 MeVÞ transi-
tions, has almost no contribution at 0%. Such behaviors
support our MD analysis with !L & 3 components at

forward angles to extract the !L ¼ 0 component. As
shown in Fig. 2 the angular distributions are reproduced
fairly well by the DWIA calculations with appropriate
normalizations.
The results of the MD analyses are shown in Fig. 1. The

!L ¼ 0 component of the cross section, !!L¼0ðq;!Þ, is
proportional to the BðGTÞ such that

!!L¼0ðq;!Þ ¼ !̂GTFðq;!ÞBðGTÞ; (5)

where !̂GT is the GT unit cross section and Fðq;!Þ is the
kinematical correction factor [23]. The GT unit cross sec-
tion has been determined from the mass-number depen-
dence studied at 300 MeV [24] and its value is
!̂GT ¼ 4:69) 0:35 mb=sr. We note that the quasifree
scattering, which cannot be related to the GT excitation,
is suppressed considerably around 0% due to the Pauli-
blocking effect since the momentum of the recoil nucleon
is smaller than the Fermi momentum of *1:4 fm'1. The
momentum transfer at Ex ¼ 30 MeV is 0:24 fm'1 at 0%

and 0:42 fm'1 at 5%.
The strength distributions are shown in Fig. 3. Here the

contribution from the isobaric analogue state (IAS) at
6.7 MeV, corresponding to 0:4) 0:1 in GT unit [24], has
already been subtracted. The strength is denoted as
BðGTþ IVSMÞ because it probably contains an isovector
spin monopole (IVSM) component [25,26]. The IVSM is a
2@! excitation via the r2!t) operator, resulting in a
forward-peaking angular distribution similar to that of
the GT transition [25]. Since the contribution of the
IVSM has not been well determined quantitatively [25],
it has been estimated by DWIA calculations by assuming
that the strength is fully exhausted in a single level [27] at
Ex + 35 MeV in the ðp; nÞ spectrum and 27 MeV in the
ðn; pÞ spectrum [26]. The estimated IVSM contributions
are 0:9) 0:2 unit in the ðp; nÞ and 0:9) 0:4 in the ðn; pÞ

FIG. 2 (color online). Angular distributions of the double-
differential cross section for the 48Caðp; nÞ48Sc reaction at
(a) Ex ¼ 2:6 MeV, (b) 1.0 MeV, and (c) 0.0 MeV. The curves
represent DWIA calculations with appropriate normalizations.

PRL 103, 012503 (2009) P HY S I CA L R EV I EW LE T T E R S
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C. Gaarde et al., Nucl. Phys. A 369, 257 (1981). K. Yako et al., Phys. Rev. Lett. 103, 012503 (2009),



Multipole decomposition analysis
For each energy transfer ω, it is assumed that: 

The measured c.s. = An incoherent sum of c.s. arising from different ΔJπ


•            : relative strengths of the individual multipoles

•            : angular distributions obtained by DWIA calculations


Angular distributions,             , are prepared for several p-h combinations: 
For each            , the strength             is determined to minimize the χ2-value defined by


• The p-h combination giving the minimum χ2  
is chosen. 

• ΔL is limited up to 3 (ΔJπ=4-) due to:

• ΔLmax < Δk・RZr = 4


• limited data points (7 for (p,n))

M. Ichimura et al. / Progress in Particle and Nuclear Physics 56 (2006) 446–531 495

Table 4
Left: Binding energies of neutron–holes [165] and proton–holes [166] for 90Zr and right: Binding energies of neutron-
particles [167] and proton-particles [168] for 90Y and 90Nb, respectively

Orbit 90Zr Orbit 90Y 90Nb
Neutron (MeV) Proton (MeV) Neutron (MeV) Proton (MeV)

1g9/2 −11.97 Empty 1g9/2 Occupied −5.08
2p1/2 −12.56 −8.35 1g7/2 −4.66 Unbound
2p3/2 −13.06 −9.86 2d5/2 −6.86 −1.71
1 f5/2 −13.42 −10.09 2d3/2 −4.82 Unbound
1 f7/2 −21.27 −15.13 1h11/2 −4.69 Unbound

3s1/2 −5.66 Unbound

Fig. 20. Normalized DWIA cross sections for various 1p1h configurations with fixed !Jπ . The left panel shows the
results for 90Zr(p, n) at Tp = 295 MeV and Ex = 30 MeV. The right panel shows the results for 90Zr(n, p) at
Tn = 293 MeV and Ex = 30 MeV.

combination of calculated angular distributions giving the minimum χ2(ω) value in Eq. (7.2)
was chosen.
Fig. 21 shows the MDA results for 90Zr(p, n) and 90Zr(n, p). The statistical and systematic

uncertainties of the data are about 2% and 5% for (p, n) [157] and (n, p) [159], respectively.
Because the differences between the DWIA cross sections of the members (!J = !L ± 1,
!L) of a given !L transfer are small, the separation of a given !L transfer cross section into
!Jπ components in MDA has large uncertainties. Thus we have shown the results with the!Jπ

transitions grouped to the lowest dominant !L value in the present angular range. The results
for the MDA are in good agreement with the measured cross sections for the whole excitation
energy region for all angles. For 90Zr(p, n), the MDA clearly gives a fairly large contribution of

ΔL=3 ΔL=3ΔL=2 ΔL=2

ΔL=0 ΔL=0 ΔL=1

ΔL=1ΔL=1ΔL=1ΔL=1

ΔL=1

90Zr(n,p)90Zr(p,n)

Data: 
90Zr(p,n) and 90Zr(n,p)

at 300 MeV

K.Yako et al., Phys. Lett. B 615, 193 (2005). 
M.Ichimura, H.Sakai, T.W., Prog. Part. Nucl. Phys. 56, 446 (2006).



Results of MDA
For a given ΔL, ΔJ dependence on DWIA cross sections is small: 

• ΔJ transitions (0-,1-,2-) are grouped to the lowest dominant ΔL (1).


MDA results are in good agreement with the measured cross sections. 
• For 90(p,n), a fairly large contribution of ΔL=0 up to ω～50 MeV.


• For 90Zr(p,n), a relatively small ΔL=0 component up to ω～30 MeV.496 M. Ichimura et al. / Progress in Particle and Nuclear Physics 56 (2006) 446–531

Fig. 21. MDA results for 90Zr(p, n) at Tp = 295 MeV (left) and for 90Zr(n, p) at Tn = 293 MeV (right).

the !L = 0 component up to an excitation energy ω ≈ 50 MeV, with the !L = 0 cross section
becoming zero at ω ≈ 70 MeV. For 90Zr(n, p), the MDA gives a relatively small contribution of
the !L = 0 component up to ω ≈ 30 MeV.

7.1.2. Extraction of GT strength
Proportionality ansatz
The !L = 0 component, d2σ∆L=0(q,ω)/dΩdω, of the cross sections determined in the

MDA can be related to the corresponding GT response function R±
GT(ω) as [169]

d2σ!L=0(q,ω)

dΩdω
= σ̂GTF(q,ω)R±

GT(ω), (7.3)

as is suggested by Eq. (4.36), where σ̂GT is called the GT unit cross section, the determination
of which will be discussed below, and F(q,ω) describes the (q,ω) dependence with a
normalization of F(0, 0) = 1. The GT strength B(GT±; ω) is related to the corresponding
R±
GT(ω) as

dB(GT±; ω) = R±
GT(ω)dω. (7.4)

From Eqs. (7.3) and (7.4), we can obtain the widely used relation for a discrete state as

dσ!L=0(q,ω)

dΩ
= σ̂GTF(q,ω)B(GT±; ω), (7.5)

which corresponds to Eq. (4.36) except that it includes the (q,ω) dependence F(q,ω).

ΔJπ could not  
be separated 
in this MDA.

K.Yako et al., Phys. Lett. B 615, 193 (2005). 
M.Ichimura, H.Sakai, T.W., Prog. Part. Nucl. Phys. 56, 446 (2006).
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becoming zero at ω ≈ 70 MeV. For 90Zr(n, p), the MDA gives a relatively small contribution of
the !L = 0 component up to ω ≈ 30 MeV.

7.1.2. Extraction of GT strength
Proportionality ansatz
The !L = 0 component, d2σ∆L=0(q,ω)/dΩdω, of the cross sections determined in the

MDA can be related to the corresponding GT response function R±
GT(ω) as [169]

d2σ!L=0(q,ω)

dΩdω
= σ̂GTF(q,ω)R±

GT(ω), (7.3)

as is suggested by Eq. (4.36), where σ̂GT is called the GT unit cross section, the determination
of which will be discussed below, and F(q,ω) describes the (q,ω) dependence with a
normalization of F(0, 0) = 1. The GT strength B(GT±; ω) is related to the corresponding
R±
GT(ω) as

dB(GT±; ω) = R±
GT(ω)dω. (7.4)

From Eqs. (7.3) and (7.4), we can obtain the widely used relation for a discrete state as

dσ!L=0(q,ω)

dΩ
= σ̂GTF(q,ω)B(GT±; ω), (7.5)

which corresponds to Eq. (4.36) except that it includes the (q,ω) dependence F(q,ω).
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the !L = 0 component up to an excitation energy ω ≈ 50 MeV, with the !L = 0 cross section
becoming zero at ω ≈ 70 MeV. For 90Zr(n, p), the MDA gives a relatively small contribution of
the !L = 0 component up to ω ≈ 30 MeV.

7.1.2. Extraction of GT strength
Proportionality ansatz
The !L = 0 component, d2σ∆L=0(q,ω)/dΩdω, of the cross sections determined in the

MDA can be related to the corresponding GT response function R±
GT(ω) as [169]

d2σ!L=0(q,ω)

dΩdω
= σ̂GTF(q,ω)R±

GT(ω), (7.3)

as is suggested by Eq. (4.36), where σ̂GT is called the GT unit cross section, the determination
of which will be discussed below, and F(q,ω) describes the (q,ω) dependence with a
normalization of F(0, 0) = 1. The GT strength B(GT±; ω) is related to the corresponding
R±
GT(ω) as

dB(GT±; ω) = R±
GT(ω)dω. (7.4)

From Eqs. (7.3) and (7.4), we can obtain the widely used relation for a discrete state as

dσ!L=0(q,ω)

dΩ
= σ̂GTF(q,ω)B(GT±; ω), (7.5)

which corresponds to Eq. (4.36) except that it includes the (q,ω) dependence F(q,ω).

90Zr(p,n)

90Zr(n,p)



GT unit cross sections
Systematic study for 0° (p,n) cross sections at 297 MeV 

• 58 ≦ A ≦ 120 (58Ni～120Sn)


• B(GT)’s are known from beta decay ft values

• GT unit cross sections are obtained as a function of AGAMOW-TELLER UNIT CROSS SECTIONS OF THE . . . PHYSICAL REVIEW C 79, 024602 (2009)

FIG. 8. (Color online) Unit cross sections σ̂GT,F vs. A at 198 MeV.
Open circles are our data. Open triangles are from data by Taddeucci
et al. [10]. Open square is from the datum of the (n,p) reaction by
Williams et al. [6]. Shaded areas show the A-dependences of the unit
cross sections with 1σ uncertainty.

parameter adjustment of the σ̂GT A-dependence at 297 MeV,
the xGT and N90 values would change only by <0.1%.

Table III summarizes the obtained parameters in Eq. (7).
Taddeucci et al. have studied the energy dependence of the
slope parameter xGT by the DWIA calculations and found that
xGT decreases from 0.54 to 0.42 as the energy increases from
Tp = 120 MeV to 200 MeV [10]. The xGT value of 0.45 ± 0.14
obtained in this work at 198 MeV agrees well with their value.
In addition, the xGT value decreases further to 0.40 ± 0.05
at 297 MeV due to increasing nuclear opacity in the energy
region approaching 300 MeV [11].

The square symbol in Fig. 9 is the σ̂GT value of 3.5 ±
0.6 mb/sr for 90Zr at 297 MeV used in Ref. [5], which
discussed B(GT) in the continuum. The authors of Ref. [5]
have estimated this value by comparing the sum of the GT
cross sections up to the GTGR region of Ex < 16 MeV to the
corresponding GT transition strength deduced by systematic
(p,n) measurements at 160 MeV [3] after correcting for the
energy dependence. The present A-dependence of 297 MeV

TABLE III. Parameters for the A-dependence of σ̂GT,F at 198
and 297 MeV.

N90 (mb/sr) xGT N90 (mb/sr) xF

198 MeV 3.5 ± 0.3 0.45 ± 0.14 0.21 ± 0.02 0.6 ± 0.1
297 MeV 3.4 ± 0.2 0.40 ± 0.05 0.14 ± 0.01 0.8 ± 0.1

FIG. 9. (Color online) Unit cross sections σ̂GT,F vs. A at 297 MeV.
Filled circles are our data. Filled triangles are from data by Watson
et al. [31]. Filled square is the σ̂GT value for 90Zr used in Ref. [5].
Shaded areas show the A-dependences of the unit cross sections with
1σ uncertainty. See the text for the reliability of the σ̂GT value of
114Cd.

provides a σ̂GT value of 3.36 ± 0.17 mb/sr. Herein the error is
the quadratic sum of the uncertainty due to the determination of
the A-dependence (±3%) and other systematic uncertainties
(±4%), which are not used to derive the A-dependence. It
is interesting that the value in Ref. [5] is fairly close to the
present value. If the present σ̂GT value is used in the analysis in
Ref. [5], the quenching factor of GT spin sum rule, Q, becomes
0.92 ± 0.06 ± 0.05 instead of 0.88 ± 0.06 ± 0.16 [5]. The
error due to σ̂GT is significantly reduced from ±0.16 to ±0.05.

The open square in Fig. 8 is the σ̂GT value of 5.3 ± 0.4 mb/sr
obtained from the 64Ni(n,p)64Co reaction at 200 MeV [6].
This value has been used to normalize the B(GT) distributions
in 60,62,64Co [6], which are important for calculating the
reaction rate of electron captures in a stellar core before
super novae [7,8]. However, this value is 20% larger than
that estimated from the present A-dependence at 198 MeV,
4.3 ± 0.4 mb/sr. The difference between Ref. [6] and this work
could be due to the contribution from the 0.3-MeV GT state
in 64Co, which is observed by the β−-decay measurement
of 64Fe [32] and by the 64Ni(t,3 He)64Co measurement [33].
As discussed in Ref. [6], the (t,3 He) result suggests that
the contribution of this state is 22% of the “g.s. peak” in
Ref. [6].

B. A-dependence of R2

The R2 values obtained from the present data of σ̂GT and σ̂F
are summarized in Table I and are shown as a function of A by
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FIG. 5. (Color online) Excitation-energy spectra for the (p,n)
reaction at 198 MeV on 58Ni and 120Sn with fitted curves for each
individual peak for the low-lying discrete states (left windows) and
IAS (right windows). In the 58Ni(p,n) spectrum, the shaded peak at
0 MeV is the ground state (1+) and the neighboring peak at 203 keV
is IAS.

and Hama [24] (without the Coulomb interaction for the exit
channel). Herein, assuming that the 90Zr core is not excited,
the active proton-particles and neutron-holes were restricted
to the 0g 9

2 , 1d 5
2 , 0g 7

2 , 2s 1
2 , 1d 3

2 , or 0h 11
2 shells and to the

1d 5
2 , 0g 7

2 , 2s 1
2 , 1d 3

2 , or 0h 11
2 shells, respectively. Each radial

wave function was generated from the Woods-Saxon (WS)
potential [25] whose depth was adjusted to reproduce the
binding energy.

Figure 7 shows the result of the MD analysis. The extracted
!L = 0 cross section at 0◦ was 1.03 ± 0.07 ± 0.04 mb/sr.
Here the central value was defined as the value where
the χ2 value per degree of freedom becomes the smallest
(χ2

min/2 = 0.5) among all possible combinations of the 1p1h
configurations. The first uncertainty was the result of the
quadratic sum of the fitting uncertainty and other systematic
errors in the total 0◦ cross section. The second one was the
error associated with the MD analysis, which is defined below.
Each combination of the 1p1h configurations gave a different
!L = 0 cross section. Thus, the error was defined as the largest
deviation of the !L = 0 cross section from the central value
for the combinations in the range of χ2

min < χ2 < χ2
min + 1.

The obtained !L ̸= 0 cross section at 0◦ was about 11 ± 4% of
the cross section of the entire peak. The main contribution was
due to the !L = 2 component, which is consistent with the
result of the high energy resolution 118Sn(3He,t) measurement
[26].

In regard to the 120Sn(p,n) spectrum, an angular distribution
was not measured. Therefore, the !L ̸= 0 cross section at
0◦ must be deduced by means other than the MD analysis.
In this work, we assumed the contribution from the !L ̸= 0
cross section in 120Sb as 11 ± 4%, expecting that the nuclear

FIG. 6. (Color online) Excitation-energy spectra for the (p,n)
reaction at 297 MeV on 58Ni, 70Zn, 114Cd, 118Sn, and 120Sn with fitted
curves for each individual peak for the low-lying discrete states (left
windows) and IAS (right windows). In the 58Ni(p,n) spectrum, the
shaded peak at 0 MeV is the ground state (1+) and peak at 203 MeV
is IAS.

structure of 120Sb is similar to that of 118Sb. Thus, the deter-
mined cross sections were 1.01 ± 0.12 and 0.98 ± 0.07 mb/sr
at 198 and 297 MeV, respectively.

The differential cross sections for the Fermi transitions to
the IAS’s were obtained by fitting the spectra in the GTGR
region around the IAS peaks. The exception was the 58Ni(p,n)
spectra, because the IAS peak at 203 keV was already obtained
when the cross section to the ground state was derived. The
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M. Sasano et al., Phys. Rev. C 79, 024602 (2009).

for 90Zr →

GT

Fermi



Experimental B(GT) distributions 
(p,n): fairly large B(GT) (0.45 MeV-1) at ω=20-60 MeV

(n,p): significant B(GT) at ω=20-60 MeV 


Comparison with calc. including 2p2h effects 
Dressed-particle RPA by Rijsdijk et al.

• Predict significant B(GT) for (p,n)


• supported by the MDA result

• Reproduce both low-lying GT and GTR for (p,n)

• strength at ～30 MeV for (n,p)


But underestimate at ω～40 MeV for both modes


GT strength distributions
K.Yako et al., Phys. Lett. B 615, 193 (2005). 

M.Ichimura, H.Sakai, T.W., Prog. Part. Nucl. Phys. 56, 446 (2006).

Contribution from IVSM (          ) resonances by              → should be subtracted.

IVSM

IVSM

GT-

GT+



IVSM contribution
ΣB(GT) includes IV spin-monopole (IVSM) strength. 

• IVSM : ΔJπ=1+ transition with                                           (c.f GT:                                 )

• ΔL = 0 : indistinguishable from GT in a MDA


Estimation of IVSM 
IVSM contribution is estimated in DWIA.

• The transition matrix was calculated by using the operator: 


• In terms of p-h excitations from |0> to |JM>, the normal-mode wave function is: 
 
 
 
 
 
 
where 


This method exhausts the (non-energy-weighted) sum rule (maximum IVSM contribution).

For IVSM:

IVSGMR



IVSM contribution
The calculated IVSM cross section in DWIA is 

(p,n) t- mode : 4.2 ± 0.9 in the GT unit

(n,p) t+ mode : 2.5 ± 0.3 in the GT unit

• The sum-rule value has been assumed (maximum contribution of IVSM).


By subtracting the IVSM contribution, quenching factor becomes: 

• Configuration mixing   : dominant

• Δ-hole                          : minor (～ 10%) effect (but might be not negligible)

→ 86±7 % of the sum rule value of 3(N-Z)=30 has been found up to ω=56 MeV

K.Yako et al., Phys. Lett. B 615, 193 (2005). 
M.Sasano et al., Phys. Rev. C 79, 024602 (2009).



Landau-Migdal parameters, g’NN and g’NΔ

Landau-Migdal interaction at q=0 

LM parameter g’NN 
Determine the p-h repulsion

Sensitive to GTR peak position

• g’NN = 0.6 ± 0.1


LM parameter g’NΔ 
Determine the coupling to Δ

Sensitive to the GT quenching factor Q

• g’NΔ = 0.35 ± 0.16

B(
G

T)
 (M

eV
-1

)

Mass difference ω (MeV)

Q
ue

nc
hi

ng
 fa

ct
or

 Q
g’NN > g’NΔ 
✤ The universality, g’NN=g’NΔ, does not hold. 
✤ Configuration mixing effect is dominant. g’NΔ

repulsion between

particle and hole (ph)

coupling between

ph and Δh

M.Ichimura, H.Sakai, T.W., Prog. Part. Nucl. Phys. 56, 446 (2006).

re
pu

ls
iv

e



Spin-isospin excitations/GRs 
with higher multipoles



Higher multipole modes and sum rule
Up to now, we have focused on ΔL=0 GT mode 

In (p,n) spectra, finite multipole (L≧1) modes  
are also observed 

With increasing θ (q), ΔL is also increased.

• Dipole mode with ΔL=1 and ΔS=0

• Spin-dipole (SD) mode with ΔL=1 and ΔS=1 

(ΔJπ = 0-, 1-, 2-)


Isovector spin-dipole (SD) 
ΔS=1 and ΔT=1

In macroscopic picture

• Dipole oscillation of p↑ (p↓) against n↓ (n↑)

For SD, what can we learn from:

✤ sum rule (total strength including SDR) 
✤ strength distributions

p n

C. Gaarde, Nucl. Phys. A 396, 127c (1983).

GAMOW-TELLER AND M1 RESONANCES 131c 

one-hole states in only one channel. At 45 MeV bombarding energy, where the GT I?) 
c o l l e c t i v e  state was f i r s t  observed, the (p,n) spectra are dominated by mul t is tep 
processes, and i t  is d i f f i c u l t  to get an estimate of the cross sect ion for  the 
c o l l e c t i v e  state.  

0 ÷ IAS 
9o Zr (p,n)9°Nb 

0 = 0  ° 
I* 

A Ep = 120 MeV 

1 - I , S - I  / / ,o-.,-.? 

I I I I ! 
20 I0 0 

Ex ( M e V  ) 

Fig. 4. Neutron spectra fo r  9°Zr 
at 120 and 200 MeV. The ~=1 reso- 
nance is  only seen at ]20 MeV because 
the angular d i s t r i b u t i o n  is narrower 
( in  angle) at 200 MeV (see f i gs .  3 
and 15). 

2.4. NORMALIZATION TO B-DECAY 

. G 

~ 4 
I 

o -2-oo, , , ,, , 4OO 6O0 8OO 
Ep (MeV) 

Fig. 5. The r a t i o  between the squares 
of t -ma t r i x  elements fo r  the centra l  
part  of the in te rac t ions  in the ~T- 
and T-channels is p lo t ted  versus bom- 
barding energyZ4). The crosses are 
experimental values 18) using the ex- 
pression fo r  the zero degree cross 
sect ion in the q=O l i m i t .  

For a number of GT B- t rans i t ions  throughout the per iod ic  tab le  we have 
measured the zero-degree (p,n) cross sect ion fo r  the corresponding t r ans i t i ons .  
In f i g .  6 we have p lo t ted  do/d~(e=O°)/B(GT) as a funct ion of AI /3.  We note that  

42 42 51 51 B(GT) fo r  the t r a n s i t i o n  in Ca- Sc is 2.57 whereas the t r a n s i t i o n  in V- Cr 
has B(GT)=O.OI6. The f i g u r e ,  however, shows that  also the cross sections d i f f e r  
by a fac to r  more than I00. I t  is the resu l ts  as shown in f i g .  6 that  lead us to 
conclude that  the (p,n) react ions at these energies indeed measure the GT s t reng th  

Also shown in the f i gu re  are ca lcu la ted values for  do/d~/B(GT). For 42Ca 
e.g. the experimental numbers are do/d~(e=OO)/B(GT)=5.9±l.O mb/sr (~2Sc; Ex=O.61 
MeV, ED=I60 MeV) whereas the DWIA ca lcu la t ions  give 6.8 cb/sr .  I t  is also seen 
that  the DWIA ca lcu la t ions  give the correct  slope wi th A I /3 ,  i . e .  the absorpt ion 
is wel l  described by the ca lcu la t i ons .  For the nuclei  heavier than A=144 we have 
used the ca lcu la ted cross sect ion un i t  renormalized by 15% to be in accordance 
with the measured quan t i t i es  in the region A=26-144. 

2.5. FERMI STRENGTH 
In re f .  19) the analys is of  the cross sect ion from (p,n) react ions at  160 MeV 

fo r  the t r ans i t i ons  to the IAS is discussed. I t  is shown that  the data is con- 
s is ten t  wi th a l l  the Fermi strength co l lec ted  in the IAS. 

SD

GT

F

SDR

GDR



Higher multipole modes and sum rule
Higher-multipole spin-isospin transition operators: 

• IV Spin-scalar


• IV Spin-vector


Model-independent sum-rule 

SD sum-rule (ΔL = ΔS = ΔT = 1, summed over J=0-, 1-, and 2-) 

neutron proton

• rms radius of neutron distribution:  

• neutron skin thickness: 
Sum-rule value gives

: scalar

: vector

from charge radius 



SD strengths for 90Zr
In MDA for 90Zr(p,n) and 90Zr(n,p), the ΔL=1 strengths are dominant at θ～4° 

• Resonance-like structure → SD resonance (SDR) is clearly observed in (p,n)


Proportionality relation (assumption) 
• Maximum c.s at θ～4°


• Proportionality relation


• SD unit c.s. are calculated in DWIA


• (p,n) : 

• (n,p) :  
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Fig. 21. MDA results for 90Zr(p, n) at Tp = 295 MeV (left) and for 90Zr(n, p) at Tn = 293 MeV (right).

the !L = 0 component up to an excitation energy ω ≈ 50 MeV, with the !L = 0 cross section
becoming zero at ω ≈ 70 MeV. For 90Zr(n, p), the MDA gives a relatively small contribution of
the !L = 0 component up to ω ≈ 30 MeV.

7.1.2. Extraction of GT strength
Proportionality ansatz
The !L = 0 component, d2σ∆L=0(q,ω)/dΩdω, of the cross sections determined in the

MDA can be related to the corresponding GT response function R±
GT(ω) as [169]

d2σ!L=0(q,ω)

dΩdω
= σ̂GTF(q,ω)R±

GT(ω), (7.3)

as is suggested by Eq. (4.36), where σ̂GT is called the GT unit cross section, the determination
of which will be discussed below, and F(q,ω) describes the (q,ω) dependence with a
normalization of F(0, 0) = 1. The GT strength B(GT±; ω) is related to the corresponding
R±
GT(ω) as

dB(GT±; ω) = R±
GT(ω)dω. (7.4)

From Eqs. (7.3) and (7.4), we can obtain the widely used relation for a discrete state as

dσ!L=0(q,ω)

dΩ
= σ̂GTF(q,ω)B(GT±; ω), (7.5)

which corresponds to Eq. (4.36) except that it includes the (q,ω) dependence F(q,ω).

Excitation energy of 90Nb (MeV)
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Fig. 21. MDA results for 90Zr(p, n) at Tp = 295 MeV (left) and for 90Zr(n, p) at Tn = 293 MeV (right).

the !L = 0 component up to an excitation energy ω ≈ 50 MeV, with the !L = 0 cross section
becoming zero at ω ≈ 70 MeV. For 90Zr(n, p), the MDA gives a relatively small contribution of
the !L = 0 component up to ω ≈ 30 MeV.

7.1.2. Extraction of GT strength
Proportionality ansatz
The !L = 0 component, d2σ∆L=0(q,ω)/dΩdω, of the cross sections determined in the

MDA can be related to the corresponding GT response function R±
GT(ω) as [169]

d2σ!L=0(q,ω)

dΩdω
= σ̂GTF(q,ω)R±

GT(ω), (7.3)

as is suggested by Eq. (4.36), where σ̂GT is called the GT unit cross section, the determination
of which will be discussed below, and F(q,ω) describes the (q,ω) dependence with a
normalization of F(0, 0) = 1. The GT strength B(GT±; ω) is related to the corresponding
R±
GT(ω) as

dB(GT±; ω) = R±
GT(ω)dω. (7.4)

From Eqs. (7.3) and (7.4), we can obtain the widely used relation for a discrete state as

dσ!L=0(q,ω)

dΩ
= σ̂GTF(q,ω)B(GT±; ω), (7.5)

which corresponds to Eq. (4.36) except that it includes the (q,ω) dependence F(q,ω).
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the !L = 0 component up to an excitation energy ω ≈ 50 MeV, with the !L = 0 cross section
becoming zero at ω ≈ 70 MeV. For 90Zr(n, p), the MDA gives a relatively small contribution of
the !L = 0 component up to ω ≈ 30 MeV.

7.1.2. Extraction of GT strength
Proportionality ansatz
The !L = 0 component, d2σ∆L=0(q,ω)/dΩdω, of the cross sections determined in the

MDA can be related to the corresponding GT response function R±
GT(ω) as [169]

d2σ!L=0(q,ω)

dΩdω
= σ̂GTF(q,ω)R±

GT(ω), (7.3)

as is suggested by Eq. (4.36), where σ̂GT is called the GT unit cross section, the determination
of which will be discussed below, and F(q,ω) describes the (q,ω) dependence with a
normalization of F(0, 0) = 1. The GT strength B(GT±; ω) is related to the corresponding
R±
GT(ω) as

dB(GT±; ω) = R±
GT(ω)dω. (7.4)

From Eqs. (7.3) and (7.4), we can obtain the widely used relation for a discrete state as

dσ!L=0(q,ω)

dΩ
= σ̂GTF(q,ω)B(GT±; ω), (7.5)

which corresponds to Eq. (4.36) except that it includes the (q,ω) dependence F(q,ω).
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SD strengths, B(SD±), have been  
deduced from σSD (ΔL=1)

K. Yako et al., PRC 74, 051303(R) (2006).

SDR



SD sum-rule and neutron skin thickness
Running sum of SD strength 

Exp. values approach  
HF+RPA values at 50 MeV


Sum-rule value 

✦ 


Rms radius 

 

                                                         from sum-rule

K. Yako et al., PRC 74, 051303(R) (2006).
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• Neutron skin thickness : 
•   

• How about SD strength distributions?
cf. goal of parity violation electron scattering: ±0.04 (1%)



SD strength distributions
Exp. strength 

Extends up to 50 MeV

• Configuration mix.

Single bump


HF+RPA (1p1h) 
Underestimation at Ex > 25 MeV

• 2p2h is important

Three bumps

• Ex(2-) > Ex(1-)


Second-order RPA 
Reasonably reproduce in whole region

Three bumps

Each ΔJπ (0-, 1-, 2-) distributions → Inconsistent (tensor correlation?)

SD
 s

tre
ng

th
 (f

m
2 /M

eV
)

Excitation energy (MeV)

1-

2-

K. Yako et al., PRC 74, 051303(R) (2006).

Exercise: The calculation predicts a definite sequence, i.e. 2-, 1- , 0-, with increasing 
excitation energies. This reflects the same systematics of the unperturbed p-h states. 
Show this systematics referring Appendix C of this lecture. 



A simple extension of Landau-Migdal interaction is to introduce Tensor interaction as: 

Since the tensor operator                can be expressed as


the Landau-Migdal interaction becomes:


• spin-longitudinal : strengthen the residual interaction → peak shift to high-ω (hardening) 
• spin-transverse  : weaken the residual interaction       → peak shift to low-ω (softening)


Spin-dipole resonance (SDR) 
• 0- (weak) : pure spin-longitudinal

• 1-            : pure spin-transverse

• 2-            : mixed

Extension of Landau-Migdal interaction
A.B.Migdal, “Theory of Finite Systems and Application to Atomic Nuclei” (1967).

0- and 2- (spin-longitudinal)

tensor term

Tensor force can induce mode-dependent effects 

Exercise: Show this equation.

1- and 2- (spin-transverse)

• 2- : almost cancelled

• 1- : peak shift to lower ω → Ex(2-) ～ Ex(1-) ?



Separation of SDR (L=1) into 0-, 1-, 2- is important 
• Tensor effects depends on Jπ


Normal multipole decomposition 
• Separate into each L component


• Works very well to extract GT (L=0)

• Could NOT separate into Jπ with same L


• Angular distributions are governed by L


Idea to separate SDR into each Jπ 
• Polarization observables are sensitive to Jπ

• Separate c.s. (I) into longitudinal (IDL) - transverse (IDT)


•  


•  


• 0-: Spin-longitudinal (IDL) only

• 1-: Spin-transverse (IDT) only

• 2-: Both

Separation of SDR into each Jπ

Multipole decomposition for  
longitudinal (IDL) and transverse (IDT) c.s. 
→ Can separate/specify not only L, but also Jπ

DWIA prediction
Spin-longitudinal (π)

Spin-transverse (ρ)

T.W. et al., Phys. Rev. C 85, 064606 (2012).

Spin-transverse (IDT)

Spin-longitudinal (IDL)



COMPLETE SETS OF POLARIZATION TRANSFER . . . PHYSICAL REVIEW C 85, 064606 (2012)

where a1−;!S=0(ω)IDcalc
i;1−;!S=0(θ,ω) and

a1−;!S=1(ω)IDcalc
i;1−;!S=1(θ,ω) are the spin-scalar and

spin-vector components for !J π = 1−, respectively.
The χ2 value in the fitting procedure is defined as

χ2 =
∑

θj ={&}

(
I expt(θj ) − I calc(θj )

δI (θj )

)2

+
∑

i=0,L,T

∑

θj ={(}

(
ID

expt
i (θj ) − IDcalc

i (θj )
δIDi(θj )

)2

+
∑

θj ={)}

(
A

expt
y (θj ) − Acalc

y (θj )

δAy(θj )

)2

, (17)

with

δI (θj ) = max[δI expt(θj ),α × I expt(θj )], (18a)

δIDi(θj ) = max
[
δID

expt
i (θj ),α × ID

expt
i (θj )

]
, (18b)

δAy(θj ) = max[δAexpt
y (θj ),α], (18c)

where δI expt(θj ), δID
expt
i (θj ), and δA

expt
y (θj ) are the statistical

uncertainties of I expt(θj ), ID
expt
i (θj ), and A

expt
y (θj ), respec-

tively. Here, we take α = 0.03 [57] to avoid trapping in an
unphysical local χ2 minimum. The α dependence of the final
results was also investigated in the range of α ! 0.06 with
consideration of the systematic uncertainties in the data. The
angle groups, {&}, {(}, and {)}, are given as

{&} = 1◦, 3◦, 8.5◦, 10◦, (19a)

{(} = 0◦, 2◦, 4◦, 5.5◦, 7◦, (19b)

{)} = 1◦, 2◦, 3◦, 4◦, 5.5◦, 7◦, 8.5◦, 10◦. (19c)

The variables a!J π (ω) in Eq. (16) are determined using
the least-squares technique with this χ2 to simultaneously
reproduce the cross-section and polarization observable data.

The DWIA calculations were performed using the same
computer code CRDW [36] as used previously. The parameters
in the DWIA and RPA calculations are the same as those used
in the previous calculations. The calculations were performed
for !J π transfers up to !J π = 9+. In a previous MD analysis
[13], the I calc

!J π (θ,ω) values for a given !J π were evaluated
for several 1-particle–1-hole (1p-1h) configurations, and the
1p-1h configuration that provided the best fit to the cross-
section data was selected. However, this method is not realistic
for the 208Pb(p, n) reaction, because the number of possible
1p-1h configurations is considerably larger than those for the
90Zr(p, n) and 90Zr(n, p) reactions. The present DWIA + RPA
calculations provide an approximate description of the data,
as shown in Sec. VC; therefore, the I calc

!J π values were used in
these calculations.

Figures 11 and 12 show the cross sections and analyzing
powers obtained by MD analysis, respectively. The cross-
section results are shown with the !J π transitions grouped
to the lowest dominant !L value in the present angular
range. The results of MD analysis are in reasonable agreement

FIG. 11. (Color online) Cross-section results obtained by MD
analysis. See text for details.

with the cross-section and analyzing-power data over the
entire energy transfer region for all angles. The MD analysis
clearly shows a fairly large contribution from the !L = 0
component up to ω ≃ 50 MeV. This !L = 0 contribution in
the continuum is due to both the configuration mixing and
IVSM contributions. It should be noted that the present MD
analysis provides a reasonable description for the cross section
at θlab = 4◦, which could not be realized with the DWIA +
RPA calculations, as discussed in Sec. VC. In addition, a fairly
large contribution from the !L = 1 component including the
SD transitions can be identified up to ω ≃ 50 MeV.

Figures 13 and 14 show the polarized cross sections
obtained by MD analysis. For the nonspin polarized cross
sections ID0, at θlab " 4◦, the !J π = 0+ IAS transition and
the !J π = 1− giant dipole resonance (GDR) are evident at
ω ≃ 18 and 26 MeV, respectively. For the !J π = 0− SD tran-
sition, the MD results show significant strength concentrated
at ω ≃ 32 MeV in the IDL data, which is significantly higher
than the DWIA + RPA prediction of ω ≃ 27 MeV. For the
!J π = 1− transition, two bumps at ω ≃ 19 and 25 MeV are
clearly observed in the IDT data at θlab = 4◦, even though the
DWIA + RPA calculations predict a higher energy transfer
of ω ≃ 27 MeV. For the !J π = 2− transition, the results
show a broad bump at ω ≃ 24 MeV in both the IDL and
IDT data, which is slightly higher than that predicted from
the DWIA + RPA calculations, as shown in Fig. 10. In the
following, the experimental GT and SD strengths are derived
and compared with those obtained by theoretical calculations.
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Results of multipole (L and Jπ) decomposition for 208Pb

Spin-longitudinal (π) Spin-transverse (ρ)

•Multipole (Jπ) decomposition is successful 
•SD strength is separated into 0-, 1-, and 2-

spin-flip 
ΔS = 1

non-spin-flip 
ΔS = 0

ΔL=0: 1+

ΔL=1: 0- and 2- ΔL=1: 1- and 2-
ΔL=0: 1+

I(θ) → ΔL

IDL and IDT → ΔJπ 

Note:T.W. et al., Phys. Rev. C 85, 064606 (2012).



Tensor force : 

Tensor force effects on SDR

• Softening on 1- is reproduced by considering the tensor correlation. 
• VT (tensor for np) ～ 200 MeV fm5

softening

insensitive

w/ tensor (for np)

Note: 
We focus on 1- and 2- 
strengths for simplicity. 

(since 0- strength is 
relatively weak.)

→ Jπ dependent effects on SDR in the calculations

1-

2-

w/o tensor

2-

2- 2-

1- 1-

total total

T.W. et al., Phys. Rev. C 85, 064606 (2012).



Experimental S- value : S- = 1004 ± 22(stat.) ± 163(        ) fm2 

• Quenching by Δ is expected to be ～8% → Corrected S- = 1085 fm2


• S+ is expected to be 11% of S- → S+ = 116 fm2

• Estimated value: S- - S+ = 969 ± 24(stat.) ± 163(        ) fm2

Spin-dipole sum rule for 208Pb

SD sum rule

Present 
SDR

Dipole polarizability 
(Tamii-san’s data)

± 165 cm2 (              is dominant)

SD
 s

um
-r

ul
e

PREX

A.Tamii et al., PRL 107, 062502 (2011). 
PREX collaboration, PRL 108, 112502(2012).

Consistent within large uncertainty of 

Open questions/problems 
• Δ effects on SD strength

• SD strength for (n,p)

• Precise determination of 



Final Remark



Spin-isospin responses for unstable nuclei

Neutron number
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GT%strengths%from%56Ni(p,n)%at%110%MeV/u%

Difference+between+KB3G+and+GXPF1A:+

• +KB3G+weaker+spin&orbit+and+pn&residual+interac0ons+
• +KB3G+lower+level+density+

• Use+the+extracted+!L=0+component+in+combina0on+with+unit+cross+sec0on+to+extract+

Gamow&Teller+strength+[B(GT)].+

•  Compare+with+large&scale+shell&model+calcula0ons+

GXPF1A:+Honma+et+al.+:+constrained+by+data+in+full+pf&shell+

KB3G:+Poves+et+al.+:+less+constraints+–+used+in+database+for+weak+rates+for+++++++++++++++++++++++++++

+ + + ++++++++++++astrophysical+purposes.++

PRL107,+202501+(2011).++

56Ni(p,n) ; GT 
M.Sasano et al., PRL 107, 202501 (2011).

Results 

z 8He(p,n) at 200 MeV/u  

𝜃𝜃cm = 5°− 8° 

0.98 MeV 
B(GT)=0.24 

GT 
~8.3 MeV 

EIAS=10.8 MeV 

EGT - EIAS = −2.5 ± 0.5 MeV EGT - EIAS = −1.2 ± 0.4 MeV 

z 12Be(p,n) at 200 MeV/u  

GT 
~𝟏𝟏𝟏𝟏.𝟔𝟔 MeV 

EIAS=12.8 MeV 

8He(p,n) ; GT 
M.Kobayashi et al., 
(H. Sakai @ ARIS1014)

Results 

z 8He(p,n) at 200 MeV/u  

𝜃𝜃cm = 5°− 8° 

0.98 MeV 
B(GT)=0.24 

GT 
~8.3 MeV 

EIAS=10.8 MeV 

EGT - EIAS = −2.5 ± 0.5 MeV EGT - EIAS = −1.2 ± 0.4 MeV 

z 12Be(p,n) at 200 MeV/u  

GT 
~𝟏𝟏𝟏𝟏.𝟔𝟔 MeV 

EIAS=12.8 MeV 

12Be(p,n) ; GT 
K. Yako et al., 
(H. Sakai @ ARIS1014)
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0.30
0.50
0.68
0.90

exp.(stat. error)

syst. error

132Sn(p,n) ; GT 
J. Yasuda, M. Sasano et al., 
(J. Yasuda, Doctoral dissertation)

・Isospin dependence
・Skin/halo effect (Femi-level diff.) on resonance/residual int. will be known soon.



Homework #3



Homework #3
1. Let us consider the isospin transitions in a nucleus with ground-state isospin  

T=T3=(N-Z)/2. Each transitions matrix element is proportional to the relevant isospin 
Clebsh-Gordan coefficient (T T 1 -1|1 -1). Calculate this isospin coefficients for the 
transitions ①−⑤ and show that, in the (p,n) reaction on a N>Z nuclei, the T-1 state is 

predominantly excited compared with the T and T+1 states.

②
①

③

④

⑤



Homework #3 (cont’d)
2. Show the following equality. 
 

3. The kinetic energy resolution, ΔTn, by the TOF method is related to the uncertainties of  
both of timing, t, and flight path length, L, as 
 
 
 
where Δt and ΔL are uncertainties of t and L, respectively, and γ is the Lorentz factor. 
Show this relation.


4. For the SD strength distributions, the calculation predicts a definite sequence, i.e. 2-, 1- , 
0-, with increasing excitation energies. This reflects the same systematics of the 
unperturbed p-h states. Show this systematics referring Appendix C of this lecture. 



Appendix A
General features of 0° (p,n) cross sections



General features of 0° (q～0) (p,n) cross sections

General features for light nuclei (A=16-20) 

16O : closed-shell, spin-saturated, N=Z 
Fermi and GT states are not expected.

• Consistent with exp. data w/o peaks

Small c.s. is observed.

• Inclusion of np-nh configs. into the g.s.  
→ Produce small GT strengths.


18O : two extra neutrons in d5/2 
Strong GT transition by n(d5/2) → p(d5/2) to 18F(g.s.)


20Ne : Deformed nuclei with 16O+α cluster 
Spin-saturated config.  
→ GT states are not expected.

• Consistent with exp. data w/o prominent peaks.

Small peaks are observed.

• Effects of np-nh configs. in the g.s.

σ(
0°

) (
m

b/
sr

-M
eV

) cm

Excitation Energy (MeV)

GT

J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).



General features of 0° (q～0) (p,n) cross sections

General features for medium and heavy nuclei 

Medium mass nuclei of A = 90-144 (N>Z) 
Sharp IAS (F) peaks are observed.

Roughly two GT bumps are observed.

• 90Zr : g9/2 → g9/2 and g9/2 → g7/2 (main peak)

Ex of main GTR > Ex of IAS

• IAS is between two GTR bumps


Heavy mass nuclei of A ≧ 165 
Peak positions of IAS and GTR are similar.

• IAS is NOT clearly observed  

with a moderate (p,n) resolution

One (high-energy) GTR bump is observed.

• Larger collectivity die to N ≫ Z

• GT strengths concentrate to high GTR

GT

J.Rapaport and E.Sugarbaker, Ann. Rev. Nucl. Part. Sci. 44, 109 (1994).
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Appendix B
Calibration method for  

neutron detection efficiency



Intermediate energy neutron beams
Detection of fast neutrons with good energy resolutions: 

• Accomplished with relatively small detector volume (for good timing resolution in TOF).

• Detection efficiency ε < 100%


Efficiency ε should be determined to derive cross sections: 
Monte-Carlo simulations by modeling nuclear reactions  
in detectors:

• agreement between exp. data and simulations ～ 10%.


• Limited data for modeling at intermediate energies 
→ Large uncertainty.


Tagged neutrons:

• Neutrons, n’, are produced by 1H(n,n’)p

• Recoil protons, p, are measured.


• Recoil proton flux = neutron flux (tagged).

• Efficiency ε can be calibrated with known neutron flux.

Use a neutron-production reaction with a known cross section.

• 7Li(p,n)7Be(g.s.+0.43 MeV) is commonly used.

B.A.Cecil et al.,  
Nucl. Instrum. Methods  

161, 439 (1979).
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thick by 60.0 cm diameter are shown together with 
the calculated efficiencies in fig. 2(a). The agree- 
ment is seen to be good from threshold up to the 
highest measurement at about 75MeV. The 
Monte-Carlo predictions are shown compared 
against the experimental data of Hunt et al. 24) for 
a 5.08cm thick by 10.27cm diameter RE-102 
(CH~.I) counter at two different thresholds in 
fig. 2(b). The agreement is seen to be excellent for 
all the data except the point near threshold for the 
lowest threshold setting. In fig. 2(c) we show the 
comparisons of the calculations with the measure- 
ments of Edelstein et al. 6) for a 15.24 cm thick by 
15.24 cm PILOT-Y (CH] ~) scintillator at three dif- 
ferent thresholds. The agreement is seen to be 
good except that the calculations for neutron en- 
ergies near 4MeV for the lowest threshold 
(0.2 MeV equivalent-electron energy) are some- 
what low, although still in agreement with the 

0.5  

0 .4  

0.3 
Z 
u J  

G 
~- 0.2 UL. 

O.l 

1 I I I I I I 
N E - 1 0 2 A  

• 2 ,7 M e V  

data to better than 10%. This slight discrepancy 
would be removed if there is a small error in the 
values of the threshold setting. The good agree- 
ment over the entire range of neutron energies 
from 4 MeV to 200 MeV is quite striking. The 
measurements of McNaughton et al.l°) are shown 
together with the Monte-Carlo calculations in 
fig. 2(d). The neutron counter was 15.2 cm thick 
by 7.1 cm diameter NE-102A (CHI.1). The data are 
considered to represent careful measurements and 
the agreement is excellent. 

The most significant improvement in the agree- 
ment of these calculations with experimental mea- 
surements over earlier calculations is for high 
threshold settings. In fig. 3, we present a compar- 
ison of the calculations with experimental mea- 
surements at threshold settings up to 22 MeV 
equivalent-electron energy. Fig. 3(a) is a compar- 
ison of calculations with the improved Monte-Car- 
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Fig. 3. Compar ison of  efficiency measu remen t s  with calculations of  the Monte-Car lo  compute r  code for plastic scintillators 
with thresholds  set from 1.1 to 22.2 MeV equivalent-electron energies:  (a) Crabb et al,2S), (b) Young et al.26), (c) Riddle et al. 12) 
and (d) Betti et al,27). 



7Li(p,n)7Be 
g.s. and 0.429 MeV of 7Be: only particle-emission stable

• Activation cross section for the production of 7Be  

= Total cross section to these states

Half-life of 7Be = 53.3d  
→ 10.4% branching to 7Li(0.478 MeV)

• Total cross section, σT,  can be measured  

by measuring the 0.478 MeV γ-emission.


Experimental results for σT 

• σT is well-known at Ep = 25-480 MeV

7Li(p,n) as a neutron source w/ known flux

J. D'AURIA et al. 30

III. RESULTS AND DISCUSSION

Results of the present study are given in Table I and
shown in Fig. 1. The total uncertainties range from 6 to
18% for individual results with a relative uncertainty of
+9.7%. The largest contributing error comes from the
uncertainty in the target thickness. Comparison of thick
and thin target yields for a given energy were in agree-

TABLE I. Measured total cross sections for the
Li(p, n)'He(g. s. + 0.429 MeV) reaction.

Proton energy'
Measured cross sections (mb)

'Li (metal) 'LiCl (Ref. 1)

60.1
62.0
69.4
79.1
80.0
88.9
100.1
119.4
120.1
135.0
138.6
143.9
156.7
160.1
174.5
190.0
191.0
199.1
252.0
301.0
349.0
400.0
480.0

12.02+1.02

7.96+0 80

4.88+0 41'
4.30+0.41

3.77+0.40

3.01+0.24
2.85+0.19

2.58+0.30
1.73+0.10
1.41+0.26
1.47+0.18
1.08+0.07

12.00+ 1.03'
11.28+ 1.58
10.78+1.02
8.09+0.71

7.46+1.00
7.29+0.77
5.29+0.45

5.31+0.53'
4.99+0.43
4.97+0.43
4.56+0.42
4.52+0.41'
3.50+0.36
3.50+0.35'

3.46+0.35

'Uncertainty in beam energy +0.1 MeV.
Reference 1.
'Measured in present study.

three Al metal foils used both to monitor the incident flux
and to estimate losses due to recoiling Be nuclei. In addi-
tion, these foils were also used to obtain cross sections for
the production of Be in Al.
Irradiated targets at IUCF containing 10—500 nCi of

He were counted periodically in a standard geometry for
several months to ensure proper exponential decay. The
samples were routinely counted using a 45 cm' PGT
Ge(Li) detector whose efficiency was determined within
+3% using standard NBS precision y-ray reference
sources. Similarly at TRIUMF the irradiated targets and
catchers containing the Be activity were counted periodi-
cally in a standard geometry over a period of several
months using an ORTEC Ge(Li) detector whose efficien-
cy was determined within +10% using standard precision
IAEA y-ray reference sources. The final errors on the
cross sectional data were the following: counting statis-
tics (3%), efficiency determinations (3—10%), target
thickness determinations (5—10%), and beam current in-
tegration (5—6%), which combine in quadrature to yield
total uncertainties of 6—18%.

r . r
LI(p, &) Be TOTAL REACTION

CROSS SECTION
in a = -I.I3 InE + 7.05P

b

O
lO

OP
CA

ei

I I I I I I I I I I

IO

E p (MeV}
FIG. 1. The excitation function for the 'Li(p, n)'Be(g. s.
+0.429 MeV) total reaction cross sections showing the 1/E
dependence.

10
IO

ment with a relative uncertainty of +8.9% indicating lit-
tle if any secondary particle production due to target
thickness. The values listed in Table I for 60, 301, 400,
and 480 MeV are weighted means of thick and thin target
yields. No corrections for recoil loss were made since the
Be yields in the Al catcher foi1s indicated that the recoil
losses were negligible. The Li metal target results were
fitted to

Ino (E)=—1.05 lnE +6.77 .
The differences between the metal and salt targets were
shown to be due to the production of Be in the
Cl(p, x) Be reaction which has a strongly increasing exci-
tation function between 60 and 200 MeV. At 60 MeV the
Cl cross section was measured to be 0.29 mb or about
2.4% of the Li(p, n) Be reaction cross section, whereas at
190 MeV the chlorine cross section was measured to be
0.78 mb which is 26% of the Li metal result. The
Al(p, x) Be yields measured at 301, 400, and 480 MeV

confirmed the energy dependence of the general (p, x)'Be
reaction and are in good agreement with the results of
Lafleur et a/. ' In the study by Ward et aI. ' comparison
of Li metal and LiC1 results were made at 80 and 120
MeV. Those results were within +8% agreement. No
comparison was made at higher energies since it was not
anticipated that the Cl(p, x) Be cross section would have
such a strongly increasing excitation function. LiC1 tar-
gets were used in the earlier study because of the ease of

lno. (E )=—1.13 lnE„+7.05,
where Ep is the laboratory energy in MeV and o(E) is in.
mb, with a correlation coefficient of 0.996.
The LiC1 results are also given in Table I, where the

recent results at 60, 135, 160, and 190 MeV are in good
agreement (+7%) with the previous results of Ward
et a/. ' which were fitted to

J.D’Auria et al., Phys. Rev. C 30, 1999(1984).

L.Valentin, Nucl. Phys. 62, 81 (1965).

particle-emission
unstable

σT
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I I ~ t ~ I I I =0.345+0.008 (6)

0.5
10 100

bombarding energy L'~ (Me&'}
1000

o T =2m f tr(8)sin8 d 6 .
0

This expression can also be written as

(3)

FIG. 1. Total cross section for the 'Li(p, n)'Be (g.s.+0.43-
MeV) reaction. The dashed line corresponds to the parametriz-
ation of Eq. (1). The dotted line assumes a constant value for
the momentum-transfer integral I, [Eq. (5)].

for energies E &80 MeV. A linear fit of the form
I =a +bE yields an insignificant result for the slope pa-
q P
rameter b. The chi squared per degree of freedom is mar-
ginally better for the parametrization of Eqs. (4)—(6) than
for that of Eq. (1) when applied only to the data for
E &80 MeV. A constant value for I will result if the
c.m. momentum-transfer distribution is invariant with
bombarding energy. An approximate invariance was re-
cently noted by Watson et al. ' and is also seen in the
data presented in the next section. Compensating
differences in the cr(q) distribution can also lead to a con-
stant value for I, so the result of Eq. (6} is not sufficient
to guarantee an invariant integrand (momentum-transfer
distribution). However, the qualitative similarity of the
distributions for all energies Ep &80 MeV indicates that
any shape differences are small.
The activation cross sections used here are based upon

the previously accepted value of (10.4+0. 1)% for the
Be(s) Li(0.48-MeV} branching ratio. ' Reports that this
value may be erroneous stimulated many new measure-
ments about six years ago. The weighted average includ-
ing these new measurements is' (10.45+0.04)%%uo. This
updated value is close enough to the previous one that we
have not corrected the activation data to re6ect the new
measurements.

= 2Ko r = qo(q}dq,
~i f (4) IV. INTEGRATION OF THE

EXPERIMENTAL DISTRIBUTIONS

where k;, ki, and q are the initial and final wave slumbers
and the momentum transfer in the center-of-mass frame.
The limits on the integral go from q,„=k,.—ki to
q,„=k,+ki. The momentum-transfer integral

Iq= cfo' q g (5)

extracted from the activation total-cross-section data is
displayed in Fig. 1. The data in Fig. 2 are consistent with
a constant value of

The momentum-transfer distribution qo'(q) at each en-
ergy was integrated by summing the area between succes-
sive data points. The areal elements were computed us-
ing Gaussian interpolation between values of rr(q). This
technique is especially appropriate at low momentum
transfer' (q (0.7 fm ') and beyond this range the
difference between this type of interpolation and ex-
ponential interpolation contributes negligible uncertainty
to the integral. The area beyond the last measured value
of o (q) was estimated by integrating an exponential func-
tion

p.6
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3
02
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I
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I o
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I & g & s I i & i s I «s i I
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Ep (MeV}

500

FIG. 2. Values for the momentum-transfer integral Iq ex-
tracted from the activation cross sections of Fig. 1. The dashed
line corresponds to a constant value of I~ =0.345+0.008.

o E(q}=ooexp(—qR),
where the slope parameter R =3.0+0. 1 is the weighted
averaged of the values obtained from least-squares fits to
the distributions extending to q =1.9 fm ' or larger (i.e.,
for E = 120, 160, 200, 494, and 795 MeV). This extrapo-
lated area is significant only for the 80-, 120-, and 644-
MeV distributions, which extend to 0.891, 1.941, and
1.014 fm ', respectively. The extrapolated area
represents 21.6% of the total at 80 MeV, 1.7% of the to-
tal at 120 MeV, and 17.7% of the total at 644 MeV. The
contribution is less than 1% for all other energies.
The estimated uncertainty in each integrated distribu-

tion includes the effects of the statistical uncertainty for
each data point, an additional 2% systematic uncertainty
on each data point (attributed to current integration, live-
time correction, etc.), and the estimated uncertainty in
the extrapolated area.
The integrated distributions were normalized to the ac-

7Li(p,n) as a neutron source w/ known flux
The total c.s., σT, is the integral of differential c.s. σ(θ): 

• Iq deduced from σT are constant at Tp ≧ 80 MeV.


By measuring the relative q-dependence of σ(q), absolute values can be deduced with: 

= momentum-transfer  
   integral : Iq
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V. ZERO-DEGREE DIFFERENTIAL CROSS SECTION

The differential cross section section o.o corresponding
to q =0 was obtained from each normalized distribution
by performing a least-squares Gaussian fit to the low-
momentum-transfer region, where the distribution is well
described by'

cr(q) =croexp —q (8)

0,1

I

0 01 I

0 1 2

momentum t,ransfer q, (fm ')

FIG. 3. Differential cross sections for the 'Li(p, n)'Be (g.s.
+0.43-MeV) reaction between 80 and 795 MeV. The distribu-
tions are normalized assuming a constant momentum integral
I~. The dashed line represents a Bessel function fit with nine
terms [Eq. (9)].

tivation cross sections as parametrized in Sec. III. The
uncertainty in the total cross section obtained from the
parametrization of Eq. (1) can be estimated from the co-
variance matrix of the least-squares fit. This uncertainty
is 3.8% at 795 MeV and only 1.2% at 80 MeV. By com-
parison, the constant-I assumption yields an uncertainty
of 2.2%. The distributions normalized to the constant-I
parametrization are displayed in Figs. 3 and 4.

Values for the mean-square radius (msr) ( r ) determined
by fitting each distribution for q &0.5 fm ' are displayed
in Fig. 5. The low-q distributions and the corresponding
fits are shown in Figs. 6 and 7.
The main contributions to ( r ) are from the transition

density and the effective interaction. The energy-
dependent msr for the central isovector spin-flip interac-
tion has been obtained from the t-matrix parametrization
of Franey and Love. ' An analysis of Li(e, e') transverse
form factors for the unresolved g.s.+0.478-MeV doublet
yields an msr of 7.29+0.81 fm for the magnetization
density. ' Similarly, the msr for the charge density is
5.71+0.14 fm . These values have been added to the msr
for the effective interaction to produce the solid and
dashed lines, respectively, in Fig. 5. Distortion effects
have been neglected in this comparison. A11 of the energy
dependence in the two calculated curves comes from the
effective interaction. The minor contribution from the
central non-spin-flip interaction has been neglected.
Also, an analysis of electron scattering data for the
ground state and resolved 0.478-MeV level yields some-
what larger values for the two ground-state radii. ' In
spite of the obvious limitations, this simple calculation
does a good job of reproducing the trend of the data. A
more quantitative analysis is beyond the scope of this pa-
per.
The range of momentum transfer over which to fit the

data must be carefully chosen to avoid contributions
from I.&0 angular-momentum transfer. A range that is
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FIG. 4. Distribution of qo.(q) from Fig. 3. The dashed line
represents a Bessel function fit with nine terms [Eq. (12)].

FIG. 5. Mean-squared radius ( r ) extracted from the
Li(p, n) cross-section distributions. [See Eq. (8).] The solid and
dashed lines represent calculations based upon the mean-
squared radius of the magnetization density and charge density,
respectively.

Final results 
for σc.m.(0°)

c.m. cross sections are almost constant  
with 27.0±0.8 mb/sr at Tp=80-795 MeV

momentum transfer integral Iq

q-dependence of σ(q)

T.N.Taddeucci et al., Phys. Rev. C 41, 2548 (1990).



Appendix C
Theoretical predictions of SDR



Theoretical predictions for SD strengths
Spin-dipole operator: 

Theoretical calculations 
• 1st RPA : 1p-1h only

• 2nd RPA : 1p-1h + 2p-2h


Theoretical predictions: 
SDR strength is spread out in ω=15-35 MeV

Coupling to 2p-2h excitations causes:

• broadening of SDR distributions

• spreading to higher excitations

Sequence of SDR peak energies

• 2- < 1- < 0-

• same systematics of s.p. states.

1st order RPA
2nd order RPA

0-

1-

2-

2-1-0-

ex. SD for 4He


