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Prelude




Theoretical Context

m finite nuclel

m few-nucleon systems
m huclear interaction

Nuclear Structure

m hadron structure

m quarks & gluons
s deconfinement
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New Era of Nuclear Structure Theory

® QCD at low energies

improved understanding through lattice
simulations & effective field theories

A = quantum many-body methods

\ \ advances in ab initio treatment of the
nuclear many-body problem

= computing and algorithms

increase of computational resources and
developments of algorithms

m experimental facilities

amazing perspectives for the exploration
of nuclei far-off stability



The Problem

H ‘wn) = Ep wn)

Assumptions

e use nucleons as effective degrees of freedom

e use non-relativistic framework, relativistic
corrections are absorbed in Hamiltonian

e use Hamiltonian formulation, i.e., conventional
many-body quantum mechanics

e focus on bound states, though continuum
aspects are very interesting




The Problem

H ‘wn) = Ep wn)

What is this many-body What about these
Hamiltonian? many-body states?
nuclear forces, chiral effective many-body quantum mechanics,
field theory, three-body antisymmetry, second
Interactions, consistency, quantisation, many-body basis,
convergence,... truncations,...

How to solve this
equation?

ab initio methods, correlations,
similarity transformations, large-
scale diagonalization, coupled-
cluster theory,...



Many-Body Quantum Mechanics

... @ very quick reminder




Single-Particle Basis

m effective constituents are nucleons characterized by position, spin and isospin
degrees of freedom

|a) = | position) ® |spin) ® |isospin)

m typical basis choice for configuration-type bound-state methods

spherical harmonic oscillator or other

| position) = [nIm;) . . . .
spherical single-particle potential

|spin) = |s= 2, ms) eigenstates of s2 and s; with s=1/2

lisospin) = |t = % me ) eigenstates of t? and tz with t=1/2

m use spin-orbit coupling at the single-particle level

. [ 1/2
nipim 3me) = 3,

ml;ms

J
m
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Many-Body Basis

m Slater determinants: antisymmetrized A-body product states
|o1as... :—ngn n(lay)e [az)®:--® |[aa))
m given a complete single-particle basis 1/2)} then the set of Slater determinants

formed by all possible combinations of A different single-particle states is a
complete basis of the antisymmetric A-body Hilbert space

m resolution of the identity operator

1= Z la10n...aa{a100o...04] = - Z la10o...aa{a105...04]
o01<02<...<0p A a1,07,..., aa

m expansion of general antisymmetric state in Slater determinant basis

W)= > Caas.an l0102...00) =) Ci [{o102...0a31)
i

a1<02<...<0dA




Second Quantization: Basics

m define Fock-space as direct sum of A-particle Hilbert spaces

F=Ho®DH1®H2D - ©HAD---

® vacuum state: the only state in the zero-particle Hilbert space

10) € Ho (0]0) =1 0)#0

m creation operators: add a particle in single-particle state |a) to an A-body
Slater determinant yielding an (A+1)-body Slater determinant

T _
a |0) = |a)
n _ laa1ao...aa) ; o & {a102...04}
a' lajar...aa) = .
Ofl 152 Al {O :  otherwise

m resulting states are automatically normalized and antisymmetrized

m new single-particle state is added in the first slot, can be moved elsewhere
through transpositions



Second Quantization: Basics

m annihilation operators: remove a particle with single-particle state |a) from
an A-body Slater determinant yielding an (A-1)-body Slater determinant

aq|0) =0

(- oos...ai-1ai41...aa) 5 a=a;

Aa |01072...047) = :
al ) {O ; otherwise

m annihilation operator acts on first slot, need transpositions to get correct single-
particle state there

m based on these definitions one can easily show that creation and annihilations
operators satisfy anticommutation relations

{Odg, A} =0 {af ,a,}=0 {ag,a’,} = baar

m complication of handling permutations in "first quantization"” are translated to
the commutation behaviour of strings of operators



Second Quantization: States

m Slater determinants can be written as string of creation operators acting on
vacuum state

_ At AT ...At
|O(1c7(2...o{A)—ao{lao{2 aO{A|O)

m alternatively one can define an A-body reference Slater determinant

_ — At at ...t
|®) = |a1ao...04) = Ay, Qg 70, |0)

and construct arbitrary Slater determinants through particle-hole excitations
on top of the reference state

|®P) =al a_ @)

ap  Oq

PAy _ AT At
|¢ab) _ aapaaqaabaaa )

index convention: 4,b,c,... : hole states, occupied in reference state
p,q,r,... . particle state, unoccupied in reference states



Second Quantization: Operators

m operators can be expressed in terms of creation and annihilation operators as
well, e.qg., for one-body kinetic energy and two-body interactions:

‘first quantization’ second quantization
A
T=Z L T=Z(O{|t|cx’)a;aa/
i=1 aa’
c 1 AN
V = Z Vij V = Z Z (0(10(2|V|O{10{2) aalaaz aaéaa’l
i<j=1 010{20{’10{5

m set of one or two-body matrix elements fully defines the one or two-body
operator in Fock space

m second quantization is extremely convenient to compute matrix elements of
operators with Slater determinants



Nuclear Hamiltonian




Nuclear Hamiltonian

m general form of many-body Hamiltonian can be split into a center-of-mass
and an intrinsic part

H=T+Vyn+V3n+:=Tem+ Tint +Vany +V3ny+ -
= Tem + Hint

m intrinsic Hamiltonian is invariant under translation, rotation, Galilei boost,
parity, time evolution, time reversal,...

Hint =Tint+VNN+V3N+°"

A A
—Z—(pl B/)° + ZVNN,U + Z V3N, ijk + -

i<j i<j i<j<k

m these symmetries constrain the possible operator structures that can appear in
the interaction terms...

. but how can we really determine the nuclear interaction ?



Nature of the Nuclear Interaction

m nuclear interaction is not fundamental

m residual force analogous to van der Waals
interaction between neutral atoms

m based on QCD and induced via polarization
of quark and gluon distributions of nucleons

= encapsulates all the complications of the
QCD dynamics and the structure of nucleons

m acts only if the nucleons overlap, i.e. at
short ranges

mirreducible three-nucleon interactions are
important



Yesterday... from Phenomenology

Wiringa, Machleidt,...

m until 2005: high-precision phenomenological NN interactions were state-
of-the-art in ab initio nuclear structure theory

= Argonne V18: long-range one-pion exchange plus phenomenological

parametrization of medium- and short-rars rms, local operator form
= CD Bonn 2000: more systematic NI thange parametrization
including pseudo-scalar, scalar (\C inherently nonlocal
. X' .S O
SV~ _x\C oC

m parameters of the NN QN . phase shifts up to ~300 MeV
and reproduce the

O
m supplemented by phe \
consisting of a Fujita-M
picked contributions

wa-type term plus various hand-

m fit to ground states and spectra of light nuclei, sometimes
up to A<8



Argonne V18 Potential

Wiringa, et al., PRC 51, 38 (1995)

VNN = SZ:T v (r) st + SZ:T VISZT(F) L2 Mst

100} v(r)L? | , ,
+ZV;(") S12 ”1T+ZVIT'5(F)(E°§)W1T

S 0 T T

()] — =

= +> VB2 (L-8)2 T +...

T

100}

100l v(r)L-S | v(r) (L-S)? |

2 0 (S, T)

= —(1,0)
_(1,1)

100} —(0,0)
__(0,1)




Tomorrow... from Lattice QCD

NN wave function ¢(r)

V(1) [MeV]

PRL 99, 022001 (2007)

N Ishii et al.,

Hatsuda, Aoki, Ishii, Beane, Savage, Bedaque,...

m first attempts towards construction of
nuclear interactions directly from
lattice QCD simulations

m compute relative two-nucleon wave
function on the lattice

m invert Schrodinger equation to
extract effective two-nucleon potential

m only schematic results so far
(unphysical masses and mass
dependence, model dependence,...)

m alternatives: phase-shifts or low-
energy constants from lattice QCD




Today... from Chiral EFT

Weinberg, van Kolck, Machleidt, Entem, MeiBner, Epelbaum, Krebs, Bernard,...

NN 3N 4N

m low-energy effective field theory for
relevant degrees of freedom (1,N) based

on symmetries of QCD

LO
>
|
|

m explicit long-range pion dynamics

m unresolved short-range physics absorbed
in contact terms, low-energy constants
fit to experiment ‘I '

NLO
|
|

m systematic expansion in a small parameter
with power counting enable controlled
improvements and error quantification H

m hierarchy of consistent NN, 3N, 4N,...
Interactions

m consistent electromagnetic and weak
operators can be constructed in the same
framework
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Momentum-Space Matrix Elements

(q(LS)JM; TM|vnn |q'(L'S)JM; TMT) J

Argonne V18 chiral NN
(N3LO, E&M, 500 MeV)
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Matrix Elements




Partial-Wave Matrix Elements

m relative partial-wave matrix elements of NN and 3N interaction are
universal input for many-body calculations

m selection of relevant partial-wave bases in two and three-body space with all
M quantum numbers suppressed:

two-body relative momentum: q (LS)JT)

two-body relative HO: N (LS)]T)

three-body Jacobi momentum: m172; [(L1S1)J1, (L25) /21 J12; (T13) T12)
three-body Jacobi HO: N1N2; [(L1S1)J1, (L23) )21 /12; (T13) T12)
antisym. three-body Jacobi HO: E120/7,T12)

m [ots of transformations between the different bases are needed in practice

m exception: Quantum Monte-Carlo methods working in coordinate
representation need local operator form



Symmetries and Matrix Elements

m relative partial-wave matrix elements make maximum use of the symmetries
of the nuclear interaction

m consider, e.g., the relative two-body matrix elements in HO basis

(N (LS)JM; TMT|vnn [N (L'S"))'M”; T M)

m the matrix elements of the NN interaction
.. do not connect different J
.. do not connect different M and are independent of M
.. do not connect different parities
.. do not connect different S
.. do not connect different T
.. do not connect different Mr

= (N (LS)/); TMt|vnn |N’ (L'S)); TMT)

m relative matrix elements are efficient and simple to compute




Transformation to Single-Particle Basis

m most many-body calculations need matrix elements with single-particle
quantum numbers (cf. second quantization)

(onoz|vyn [ayal) =

_ ' H /7 |7 :/ / / /7 |7 :/ / /
= (n1lijimimer, n2lzjomamez|vn [N 77 mImy, nSEjSmomy,)

1 tl’

m obtained from relative HO matrix elements via Moshinsky-transformation

: - TR .
(n1lyji, n2bj2:JTIvan [N 57, N5 6050 )T) =

=/(2/1+1)(2}2 + D)Rj +1)(2j5+1) S ST

) v’)\’ln’ll’l, n’zl’z;L’))

X (V(AS)jT|vnn [V (A'S))T)




Matrix Element Machinery

® beneath any ab initio many-body method there is a machinery for computing,
transforming and storing matrix elements of all operators entering the

calculation
compute and store relative compute and store Jacobi
two-body HO matrix elements three-body HO matrix elements
of NN interaction of 3N interaction
A .,
perform unitary transformations of the two- and three-body
relative matrix elements
(e.g. Similarity Renormalization Group)

A
transform to single-particle transform to single-particle
JT-coupled two-body HO matrix JT-coupled three-body HO matrix
elements and store elements and store

J Vv

same for 4N with
four-body matrix
elements



Two-Body Problem




Solving the Two-Body Problem

m simplest ab initio problem: the only two-nucleon bound state, the deuteron

m start from Hamiltonian in two-body space, change to center of mass and
intrinsic coordinates

H=Hcm + Hint = Tcm + Tint + VNN

1 1
= mﬁgm + Zqz + VNN

m separate two-body state into center of mass and intrinsic part

1Y) = |Pcm) ® | Pint)

m solve eigenvalue problem for intrinsic part (effective one-body problem)

Hint |¢int) =E | ¢int)




Solving the Two-Body Problem

m expand eigenstates in a relative partial-wave HO basis

$int) = > Cnigmrmr IN(LS)M; TM7)
NLSJMTMr

IN(LS)M; TM7) = > (4, wc|2) INLML) ® |SMs) ® [TMr)
M; Ms

m symmetries simplify the problem dramatically:
¢ Hint does not connect/mix different J, M, S, T, Mt and parity n
e angular mom. coupling only allows J=L+1, L, L-1 for S=1 or J=L for S=0

e total antisymmetry requires L+S+T=0dd

m for given J7 at most two sets of angular-spin-isospin quantum numbers
contribute to the expansion



Deuteron Problem

m assume J7 = 1t for the deuteron ground state, then the basis expansion
reduces to

Gint, JT=1%) = Ci) IN(01)1M; 00) + > Cy” IN(21) 1M; 00)
N N

m inserting into Schrodinger equation and multiplying with basis bra leads to
matrix eigenvalue problem

f Voo (o

(N’(01)...|Hint IN(01)...) (N’/(OL)...|Hint IN(21)...) 4 Cpr

Vo))

cat®

(N’(21)...| Hint IN(01)...) (N’(21) c\2)
\ J

m eigenvectors * \ lents and eigenvalues the energies

P
= truncate to N = Nmax and choose Nmax large enough so that

observables are converged, i.e., do not depend on Nmax anymore




Deuteron Solution

Argonne V18 chiral NN

o

~
'\
o

¢, (r) [arb. units]
= o
N W

o
=

¢, (r) [arb. units]

m deuteron wave function show two characteristics that are signatures of
correlations in the two-body system:

e suppression at small distances due to short-range repulsion

e =2 admixture generated by tensor part of the NN interaction



