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Two-Body Problem




Solving the Two-Body Problem

m simplest ab initio problem: the only two-nucleon bound state, the deuteron

m start from Hamiltonian in two-body space, change to center of mass and
intrinsic coordinates

H=Hcm + Hint = Tcm + Tint + VNN

1 1
= mﬁgm + Zqz + VNN

m separate two-body state into center of mass and intrinsic part

1Y) = |Pcm) ® | Pint)

m solve eigenvalue problem for intrinsic part (effective one-body problem)

Hint |¢int) =E | ¢int)




Solving the Two-Body Problem

m expand eigenstates in a relative partial-wave HO basis

$int) = > Cnigmrmr IN(LS)M; TM7)
NLSJMTMr

IN(LS)M; TM7) = > (4, wc|2) INLML) ® |SMs) ® [TMr)
M; Ms

m symmetries simplify the problem dramatically:
¢ Hint does not connect/mix different J, M, S, T, Mt and parity n
e angular mom. coupling only allows J=L+1, L, L-1 for S=1 or J=L for S=0

e total antisymmetry requires L+S+T=0dd

m for given J7 at most two sets of angular-spin-isospin quantum numbers
contribute to the expansion



Deuteron Problem

m assume J7 = 1t for the deuteron ground state, then the basis expansion
reduces to

Gint, JT=1%) = Ci) IN(01)1M; 00) + > Cy” IN(21) 1M; 00)
N N

m inserting into Schrodinger equation and multiplying with basis bra leads to
matrix eigenvalue problem

f Voo (o

(N’(01)...|Hint IN(01)...) (N’/(OL)...|Hint IN(21)...) 4 Cpr

Vo))

cat®

(N’(21)...| Hint IN(01)...) (N’(21) c\2)
\ J

m eigenvectors * \ lents and eigenvalues the energies

P
= truncate to N = Nmax and choose Nmax large enough so that

observables are converged, i.e., do not depend on Nmax anymore




Deuteron Solution
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m deuteron wave function show two characteristics that are signatures of
correlations in the two-body system:

e suppression at small distances due to short-range repulsion

e =2 admixture generated by tensor part of the NN interaction



Correlations &
Unitary Transformations




Correlations

correlations:
everything beyond the independent
particle picty

® many-body eigenstates of independent-particle models described by one-body
Hamiltonians are Slater determinants

m thus, a single Slater determinant does not describe correlations

m but Slater determinants are a basis of the antisym. A-body Hilbert space, so any
state can be expanded in Slater determinants

m to describe short-range correlations, a superposition of many Slater
determinants is necessary



Why Unitary Transformations ?

realistic nuclear interactions generate strong short-range
correlations in many-body states

r
Unitary Transformations

m adapt Hamiltonian to truncated low-
energy model space

m improve convergence of many-body
calculations

m preserve the physics of the initial
Hamiltonian and all observables

!

/

many-body methods rely on truncated Hilbert spaces J

not capable of describing these correlations




Unitary Transformations

m ynitary transformations conserve the spectrum of the Hamiltonian, with a
unitary operator U we get

Hl|y) =E|¢) 1=UTu=uUU"
UtHU Ut |g) = E UT o) with H = UTHU
HIg) =E|) |§) = UT|y)

m for other observables defined via matrix elements of an operator A with the
eigenstates we obtain

(WIA|Y') = (g|UUTAU UT |¢") = (| A|¢7)

unitary transformations conserve all
observables as long as the Hamiltonian and all other
operators are transformed consistently




Similarity Renormalization Group




Similarity Renormalization Group

continuous unitary transformation to
pre-diagonalize the Hamiltonian with respect
to a given basis /

m start with an explicit unitary transformation of the Hamiltonian with a
unitary operator Uqg with continuous flow parameter a

Ha —_ UaTH Ua

m differentiate both sides with respect to flow parameter

d d d
—Ha — (d_UaT)H Ua‘l‘ UaTH (_UG)

da a da
d d
= (—UGT) UgUgTH Uy + UsTH UO,UO,T(—UO,)
da da
d d
— (_UGT) UaHa + HaUaT (_Ua)
da da



Similarity Renormalization Group

m define the antihermitian generator of the unitary transformation via

T d d T T
Na = —Uqa (%UG) = (%Ua )Ua = —lNa

where the antihermiticity follows explicitly from differentiating the unitarity
condition 1 =Ug U4

m we thus obtain for the derivative of the transformed Hamiltonian

d
—Hg =nNogHa —HaNa
da

= [’70{: Ha]

thus, that change of the Hamiltonian as function of the flow parameter is
governed by the commutator of the generator with the Hamiltonian

m this is the SRG flow equation, which has a close resemblance to the
Heisenberg equation of motion




Similarity Renormalization Group

Glazek, Wilson, Wegner, Perry, Bogner, Furnstahl, Hergert, Roth,...

continuous unitary transformation to
pre-diagonalize the Hamiltonian with respect
to a given basis /

m consistent unitary transformation of Hamiltonian and observables

Ha —_ UaTH Ua Oa — UaTO Ua

® flow equations for Hq and Uq with continuous flow parameter a

d d d

—H, = , H —O0Oqy = , 0 —Ug =-U
Jor a = [Na, Hal Jor o = [Na, Oql Jor o alla

m the physics of the transformation is governed by the dynamic generator n«
and we choose an ansatz depending on the type of “pre-diaognalization” we
want to achieve




SRG Generator & Fixed Points

m standard choice for antihermitian generator: commutator of intrinsic kinetic
energy and the Hamiltonian

Na = (ZH)Z [ Tint, Ha |

® this generator vanishes if
= kinetic energy and Hamiltonian commute
= kinetic energy and Hamiltonian have a simultaneous eigenbasis

= the Hamiltonian is diagonal in the eigenbasis of the kinetic energy, i.e., in a
momentum eigenbasis

m 3 vanishing generator implies a trivial fixed point of the SRG flow equation —
the r.h.s. of the flow equation vanishes and the Hamiltonian is stationary

m SRG flow drives the Hamiltonian towards the fixed point, i.e., towards the
diagonal in momentum representation



Solving the SRG Flow Equation

m convert operator equations into a basis representation to obtain coupled
evolution equations for n-body matrix elements of the Hamiltonian

n=2: two-body relative momentum

n=3: antisym. three-body Jacobi HO

q (LS))T)
EiJ™T)

® matrix-evolution equations for n=3 with antisym. three-body Jacobi HO states:

d Esrc EsrG

EJ™T|Ha [E'VJ™T) = (2u)* >, D]

da
(EL... TintlE”i”...) (E”i”...lHa
—2(Ei...|Hg |E”i"..)(E"{"...| Tint

E//’ i,, E///’ i/,/

EV i N E" . | Hy |E'T...)
EV . N (E" . | Hy |E'T...)

+(Ei... HGH?Q”_J(E”Vﬁ_lHaH?”V”“J(E”Q”C“fTMtEQC“)]

m note: when using n-body matrix elements, components of the evolved
Hamiltonian with particle-rank > n are discarded



SRG Evolution in Two-Body Space

momentum-space matrix elements

¢, (r) [arb. units]

Argonne V18
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JT=1+,T=0

deuteron wave-function




SRG Evolution in Two-Body Space

a=0.320fm* |

~ - 1.33fm™1 /

JT=1+,T=0

deuteron wave-function

¢, (r) [arb. units]

momentum-space matrix elements




SRG Evolution in Two-Body Space

chiral NN
w& Machleidt. N3LO, 500 Mey

T=1%*,T=0

deuteron wave-function
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SRG Evolution in Two-Body Space

a=0.320fm*

S~ A=1.33fm™] /

T=1%*,T=0

deuteron wave-function

¢.(r) [arb. units]
— O
N W

momentum-space matrix elements
©
=




SRG Evolution in Three-Body Space

3B-Jacobi HO matrix elements

\

chiral NN+3N

N3LO + N2LO, triton-fit, 500 MeV

T +

1 1
=5 T = E,FIQ=28MQV

NCSM ground state 3H

0 = FE =18 20 22 0 2 4 6 8101214161820
(EI l) Nmax




SRG Evolution in Three-Body Space

{

3B-Jacobi HO matrix elements

\

oa=0.320fm

A=1.33fm™!

T +

1 1
=5 T = 5,ﬁQ=28MeV

NCSM ground state 3H

8 101214161820
(E, () Nmax

o_
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ol
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SRG Evolution in A-Body Space

m assume initial Hamiltonian and intrinsic kinetic energy are two-body operators
written in second quantization

HO=Z...aTaTaa, Tint=T—Tcm=Z...aTaTaa

m perform single evolution step Aa in Fock-space operator form
Haa = Ho + Aar [ [ Tint, Ho ], Ho]
=> ...a'a’aa+Aa » ...[[a'a’aq, a'ataa], atataal]

= Z ..a'aTaa + Aa Z .atata’atacaa + Aa Z .atata’aoa + ...

m SRG evolution induces many-body contributions in the Hamiltonian

® induced many-body contributions are the price to pay for the pre-diagonalization
of the Hamiltonian



SRG Evolution in A-Body Space

m decompose evolved Hamiltonian into irreducible n-body contributions H,!"
— HI[1] [2] [3] [4] 4 ...
Ho=H ~+H " +H" " +H "+

® truncation of cluster series formally destroys unitarity and invariance of
energy eigenvalues (independence of a)

m flow-parameter variation provides diagnostic tool to assess neglected
contributions of higher particle ranks

SRG-Evolved Hamiltonians

NNoniy : use initial NN, keep evolved NN
NN+3Nind : use initial NN, keep evolved NN+3N
NN+3Nr+sun : use initial NN+3N, keep evolved NN+3N
NN+ 3Nrfun+4Nind : use initial NN+3N, keep evolved NN+3N+4N




“He: Ground-State Energy
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Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012)
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160: Ground-State Energy

Roth, et al; PRL 107, 072501 (2011); PRL 109, 052501 (2012)
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