Heavy flavour production in low $p_{\rm T}$ at RHIC and LHC

Shingo Sakai (Univ. of Tsukuba)

Heavy flavour production in heavy-ion collisions

- Heavy flavour (charm & beauty)
 - Large mass : m_c (~1.5 GeV/c), m_b (~4.5 GeV/c) >> Λ_{QCD} (0.2 GeV/c)
 - Produced initial hard partonic scattering processes
 - Cross section calculate by perturbative QCD (pQCD)
 - Formation time $\tau \sim 1/2 \text{ m}_q \sim 0.07 \text{ fm} < \text{QGP} (\sim 0.1-1 \text{ fm})$
 - Produce before QGP and go through the medium
- low p_T heavy-flavour production is sensitive to
 - gluon nuclear PDF
 - hadronization (fragmentation vs. recombination)
 - energy loss (collisional vs. radiative energy loss) & collective motion => transport coefficient

Heavy-flavour production

- Heavy flavour production process in LO + NLO
 - Gluon scattering is dominant in high energy
 - -> sensitive to gluon nPDF in pA and AA collisions

Heavy flavours hadronization in QGP

- Hadronization in pp collisions
 - Fragmentation
- Hadronization in QGP
 - Fragmentation + recombination (qq->Meson, qqq->Baryons)
 - Observed π, p production
 - Possibly enhance charm (bottom) baryon and D_s (B_s)*

 * QGP rich in strange quarks
 - Regeneration of J/Ψ

Heavy flavours energy loss in QGP

- Interaction between heavy flavour and QGP
 - Low p_T : Elastic scattering -> "collisional energy loss"
 - High p_T : Gluon bremsstrahlung -> "radiative energy loss"
- Radiative energy loss
 - Smaller energy loss for heavy quark than for light quarks due to "dead cone" effect
 - Bremsstrahlung probability $\propto 1/(\theta^2 + (m/E)^2)^2$
 - \blacksquare $E_{loss}(g) > E_{loss}(u,d,s) > E_{loss}(c) > E_{loss}(b)$

Heavy flavours propagation in QGP

- "Brownian motion" in QGP

 - Follow Langevin equation $D_{s} \text{ (diffusion coefficient)} \propto I/\eta_{D} \text{ (drag coefficient)} \qquad \frac{d\vec{p}}{dt} = -\eta_{D}(p) \vec{p} + \vec{\xi}$
 - Sensitive to QGP transport coefficient
 - A small value of D_s -> strong coupling
 - Large R_{AA} & v₂ of heavy flavours indicate strong coupling with medium

nPDF: Heavy flavour production in pA (1)

- Low p_T : Possibly modify of charm production due to shadowing in nPDF or CGC More clear in J/ Ψ production in 2<y<3.5
- High p_T : no modification of the productions

nPDF: Heavy flavour production in pA (2)

- Indicate the effect from shadowing in 2<y<4, and Anti-shadowing in -2<y<-4 on D⁰ production
- Suppression of B production is also observed

Hadronization: D_s and B_s productions in AA

- \blacksquare D_S and B_s productions in Pb-Pb are enhanced w.r.t. their productions in pp
 - Indicate a contribution of coalesce mechanisms to charm hadron formation in the medium

Hadronization: Λ_c production in AA

- \blacksquare Λ_c production in Au+Au and Pb-Pb is enhanced w.r.t. in pp collisions
- Indicate coalesce mechanisms play a role in charm hadronization

Hadronization: J/Ψ production in AA

arXiv:1905.13669, submitted to P.L.B

STAR Inclusive: Au+Au @ 200 GeV, |y| < 0.5, $p_{_{\pm}} > 0.15$ GeV/c Inclusive: Pb+Pb @ 2.76 TeV, |y| < 0.8, p, > 0 GeV/c Au+Au @ 200 GeV, p_ > 0 GeV/c 1.4 TM I: Tsinghua 44 E ∀√) TM II: TAMU $p_{\rm T} > 0.15 \; {\rm GeV/c}$ 0.6 0.4 N ... uncertainty 150 200 250 350 100 N_{part}

Inclusive J/ψ from STAR

- J/Ψ production in RHIC (Au+Au 200 GeV) and LHC (Pb-Pb 2.76 TeV)
 - LHC result higher than RHIC result in low p_T
 - Indicate regeneration is important process of J/Ψ production in LHC

Energy loss: charm vs. beauty (1)

- \blacksquare R_{AA} of b->e is larger than c->e in low p_T
 - Indicate smaller energy loss of beauty than charm in low p_T
- Similar suppression of beauty and charm in $p_T > 10 \text{ GeV/c}$

Energy loss: charm vs. beauty (2)

- \blacksquare R_{AA}: mass ordering up to 10 GeV/c
 - Above I0 GeV/c, R_{AA} for charged particles, D (J/Ψ) and B are similart

Collective motion: D meson v_2 (1)

- Non-zero v₂ observed both RHIC and LHC
 - Charm quark participate collective motion
- Smaller v_2 of D mesons w.r.t. v_2 for Λ , Ks
 - Mass ordering

Collective motion: D meson v_2 (2)

- \blacksquare v₂ increase with centrality (central to semi-central)
 - Hydro dynamical behavior
- v3 : centrality independent
- Models: include initial-state fluctuation (LBT, PHSD & SUBATECH)

Collective motion: beauty (open)

- Smaller v_2 of b->e w.r.t. inclusive hadron v_2
- Similar v_2 of b->e and c->e?
 - Need more precise measurement with large data sample (2018)

Collective motion: charm & beauty (close)

- Comparison of $J/\Psi v_2$ (charm) and $Y v_2$ (beuaty)
 - Smaller Y v_2 than $J/\Psi v_2$
 - \blacksquare Y v_2 is consistent with zero

Collective motion: in pA collisions (1)

0-20% p-Pb collisions

- Observed positive v₂ of heavy flavours (leptonic channel) both RHIC and LHC
 - Smaller v_2 than chared hadron v_2
 - same as AA collisions

Collective motion: in pA collisions (2)

- \blacksquare Observed positive v_2 of D meson in p-Pb collisions
- \blacksquare The number of quark scaling doesn't work in D meson v_2 in p-Pb
 - Indicate smaller v_2 of charm quark in p-Pb

QGP in small system?

- \blacksquare v₂ has been thought be a signal of QGP
- Not observed suppression of HF production and modification of HF jet in pA collisions so far.

Comparison with models (1)

- Model calculations for heavy-flavour $R_{AA} \& v_2$
 - Nuclear PDF: with/without PDF
 - Cross section : PYTHIA, FONLL, MC@NLO ...
 - Medium modeling: Hydro, Glauber, Bolzmann...
 - Interaction : collisional and/or radiative
 - Hadronization : fragmentation and/or recombination

Comparison with models (2)

X. Dong, V. Greco / Progress in Particle and Nuclear Physics 104 (2019) 97–141

 \blacksquare Sensitivity to charm diffusion coefficient $2\pi TDs$ as a function of T/Tc

Summary

- ▶ Heavy flavour production in low p_T is sensitive to
 - Gluon nPDF
 - Suppression of low p_T HF production in pA
 - ▶ Effect from shadowing in 2<y<4 and Anti-shadowing in -2<y<-4
 - hadronization (fragmentation vs. recombination)
 - Enhancement of Ds, Bs, Λc and J/Ψ
 - □ Indicate recombination process for heavy flavour hadronization
 - Energy loss (collisional energy loss) & collective motion
 - Strong suppression of particles from charm and beauty
 - Positive v₂ of particles from charm and beaty
 - □ Indicate mass ordering energy loss & v₂ in low p_T
 - \square Models with small Ds (diffusion coefficient) reproduce R_{AA} and v₂