Rapidity decorrelation from hydrodynamic and initial longitudinal fluctuations

Azumi Sakai Sophia University

Collaborators: Koichi Murase and Tetsufumi Hirano

The 36th Heavy Ion Café Dynamics of High-Energy Nuclear Collisions

- Introduction
- Integrated dynamical model
- Rapidity decorrelation
- Other observables
- Summary

- Introduction
- Integrated dynamical model
- Rapidity decorrelation
- Other observables
- Summary

Fluctuations and rapidity decorrelation

Properties of QGP

Rapidity decorrelation

CMS Collaboration, Phys. Rev. C 92, 034911 (2015) F.G. Gardim *et al.*, Phys. Rev . C 87, 031901 (2013)

Dynamics

Fluctuations in heavy ion collisions

Initial state fluctuations

Initial longitudinal fluctuations

- Introduction
- Integrated dynamical model
- Rapidity decorrelation
- Other observables
- Summary

Integrated dynamical model

4.Hadron gas

Hadron cascade model (JAM)

3.Particlization

2.QGP fluid

Cooper-Frye formula (T_{sw} = 155 MeV)

Hydrodynamic fluctuations

Full 3D relativistic fluctuating hydrodynamics EoS: s95p-v1.1 (Lattice QCD+HRG)

Shear viscosity: $\eta/s = 1/4\pi$

K. Murase: Ph. D thesis The Univ. of Tokyo (2015)

1.Initial state

T.Hirano *et al.*, Prog. Part. Nucl. Phys. 70,108 (2013)

Collision Axis

Longitudinal fluctuations

Longitudinal: **PYTHIA** x BGK

Transverse: MC-Glauber model

M. Okai et al., Phys. Rev. C 95, 054914 (2017)

Hydrodynamic fluctuations

Shear stress tensor (in 1st order for illustration)

Note: Relaxation term included in actual simulations

Initial longitudinal profile

PYTHIA

Rapidity fluctuations in pp collisions

18 **PYTHIA** 16 14 12 dN^{pp} 10 8 6 4 2 0 -4 -2 2 4 6 -6 0

Y T. Sjöstrand et al., Comput. Phys. Commun. 191, 159 (2015) BGK

Nuclear effect

 N_{part} scaling, twist

M. Okai et al., Phys. Rev. C 95, 054914 (2017)

p_T -differential v_2

w/o initial longitudinal fluctuations

ALICE Collaboration, Phys. Rev. Lett. 116 (2016) 132302

Ideal hydro \rightarrow Larger than ALICE data Viscous & Fluctuating hydro ($\eta/s = 1/4\pi$) \rightarrow Good agreement with ALICE data below $p_T \sim 1.5 \text{ GeV}$

p_T -differential v_2

with initial longitudinal fluctuations

Viscous & Fluctuating hydro $(\eta/s = 1/4\pi)$ \rightarrow Good agreement with ALICE data below $p_T \sim 1.0$ GeV

 \rightarrow Increase viscosity?

ALICE Collaboration, Phys. Rev. Lett. 116 (2016) 132302

Centrality dependence of multiplicity

with initial longitudinal fluctuations

- Initial parameter tuning
- Centrality cut

ALICE Collaboration, Phys.Rev.Lett.106, 032301 (2011)

- Introduction
- Integrated dynamical model
- Rapidity decorrelation
- Other observables
- Summary

Rapidity decorrelation $r_2(\eta_p^a, \eta_p^b)$

1 > Viscous > CMS data \approx Fluctuating hydro

Hydrodynamic fluctuations

Rapidity decorrelation

Rapidity decorrelation $r_2(\eta_p^a, \eta_p^b)$

with initial longitudinal fluctuations

Close to experimental data

Centrality dependence of $r_2(\eta_p^a, \eta_p^b)$

Hydrodynamic fluctuations + Initial longitudinal fluctuations Correct centrality dependence of r_2

Centrality dependence of $r_3(\eta_p^a, \eta_p^b)$

Hydrodynamic fluctuations + Initial longitudinal fluctuations Improvement in reproducing centrality dependence of r_3

- Introduction
- Integrated dynamical model
- Rapidity decorrelation
- Other observables
- Summary

$$\nu_2(\eta_p) = \sum_{\substack{k=0\\\infty}}^{\infty} a_2^k P_k(\eta_p)$$
$$\Psi_2(\eta_p) = \sum_{\substack{k=0\\k=0}}^{\infty} b_2^k P_k(\eta_p)$$

 P_k : Legendre polynomial $P_1(\eta_p) = \eta_p$ $P_2(\eta_p) = \frac{1}{2}(3\eta_p^2 - 1)$

 a_2^k, b_2^k : Legendre coefficients ⇒Quantity to understand η_p dependent

Legendre series

$$v_2(\eta_p) = \sum_{\substack{k=0\\\infty}}^{\infty} a_2^k P_k(\eta_p)$$
$$\Psi_2(\eta_p) = \sum_{\substack{k=0\\k=0}}^{\infty} b_2^k P_k(\eta_p)$$

 P_k : Legendre polynomial $P_1(\eta_p) = \eta_p$ $P_2(\eta_p) = \frac{1}{2}(3\eta_p^2 - 1)$

 a_2^k , b_2^k : Legendre coefficients ⇒Quantity to understand η_p dependence

Legendre series

$$v_2(\eta_p) = \sum_{\substack{k=0\\\infty}}^{\infty} a_2^k P_k(\eta_p)$$
$$\Psi_2(\eta_p) = \sum_{\substack{k=0\\k=0}}^{\infty} b_2^k P_k(\eta_p)$$

 P_k : Legendre polynomial $P_1(\eta_p) = \eta_p$ $P_2(\eta_p) = \frac{1}{2}(3\eta_p^2 - 1)$

 a_2^k , b_2^k : Legendre coefficients ⇒Quantity to understand η_p dependence

Legendre series

$$v_2(\eta_p) = \sum_{\substack{k=0\\\infty}}^{\infty} a_2^k P_k(\eta_p)$$
$$\Psi_2(\eta_p) = \sum_{\substack{k=0\\k=0}}^{\infty} b_2^k P_k(\eta_p)$$

 P_k : Legendre polynomial $P_1(\eta_p) = \eta_p$ $P_2(\eta_p) = \frac{1}{2}(3\eta_p^2 - 1)$

 a_2^k , b_2^k : Legendre coefficients ⇒Quantity to understand η_p dependence

Legendre coefficients

w/o initial longitudinal fluctuations

Flow $|\boldsymbol{v}_2|$ $A_2^1 = \sqrt{\langle (a_2^1)^2 \rangle}$ Event plane angle Ψ_2 $B_2^1 = \sqrt{\langle (b_2^1)^2 \rangle}$

 a_2^k, b_2^k : Legendre coefficients

Fluctuating hydro > Viscous hydro Hydrodynamic fluctuations \Rightarrow increase η_p dependence \Rightarrow increase Legendre coefficient

Legendre coefficients

- Introduction
- Integrated dynamical model
- Rapidity decorrelation
- Other observables
- Summary

Summary

- Integrated dynamical model based on full 3D hydrodynamics
 - Initial longitudinal fluctuations
 - Hydrodynamic fluctuations
- Rapidity decorrelation $r_2(\eta_p^a, \eta_p^b)$
 - $r_2(\eta_p^a, \eta_p^b)$ close to experimental data
 - Importance of hydrodynamic fluctuations and initial longitudinal fluctuations in understanding centrality dependence of r_2 and r_3
- Legendre coefficients A_2^k , B_2^k
 - Fluctuating hydrodynamic model has larger $\eta_p {\rm dependence}$ than viscous hydrodynamic model
 - $B_2^2 = 2^{nd}$ order twist $\neq 0$

Back up

Hydrodynamic fluctuations

Shear stress tensor

Fluctuating hydro
Viscous hydro
$$\pi^{\mu\nu}(x) = 2\eta \partial^{\langle \mu} u^{\nu \rangle} + \delta \pi^{\mu\nu}(x)$$

Actual Equation

$$\begin{aligned} \tau_{\pi} \Delta^{\mu\nu}{}_{\alpha\beta} u^{\lambda} \partial_{\lambda} \pi^{\alpha\beta} + \pi^{\mu\nu} \left(1 + \frac{4}{3} \tau_{\pi} \partial_{\lambda} u^{\lambda} \right) \\ &= 2\eta \Delta^{\mu\nu}{}_{\alpha\beta} \partial^{\alpha} \pi^{\beta} + \delta \pi^{\mu\nu} \end{aligned}$$