Dynamical description of hydrodynamic fluctuations in high-energy nuclear collisions

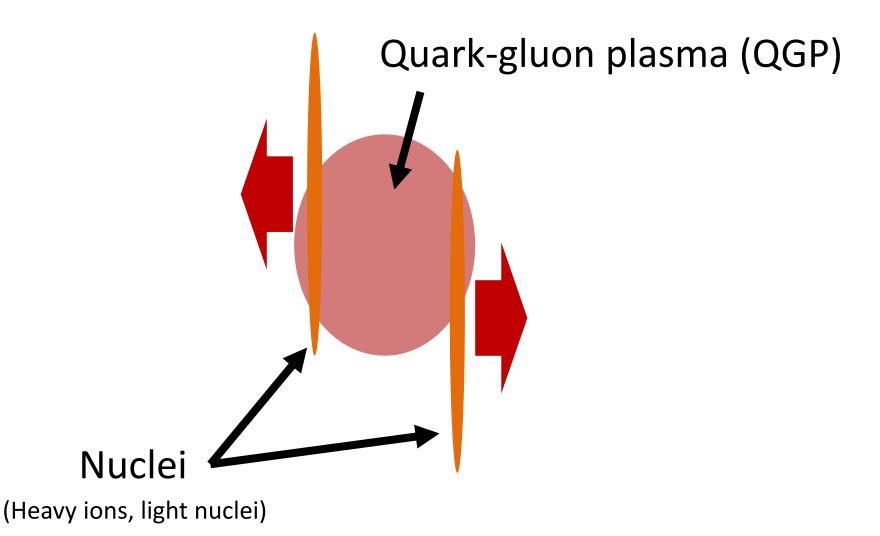
Koichi Murase

Sophia University

Jun 22, 2019, Sophia University

DYNAMICAL DESCRIPTION OF HIGH-ENERGY NUCLEAR COLLISIONS

High-energy nuclear collisions



High-energy nuclear collisions

Purpose?

→ Equilibrium properties of QGP

Equation of state

Critical point, first-order phase transition, ...

Transport properties

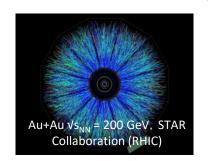
Viscosity, diffusion, relaxation time, CME, CVE, ... Stopping power for jets/mini-jets, ...

etc.

Dynamical models

Experiments

- Created matter is small and short-lived
- Matter expands in relativistic velocities



Observed quantities are just hadron momentum

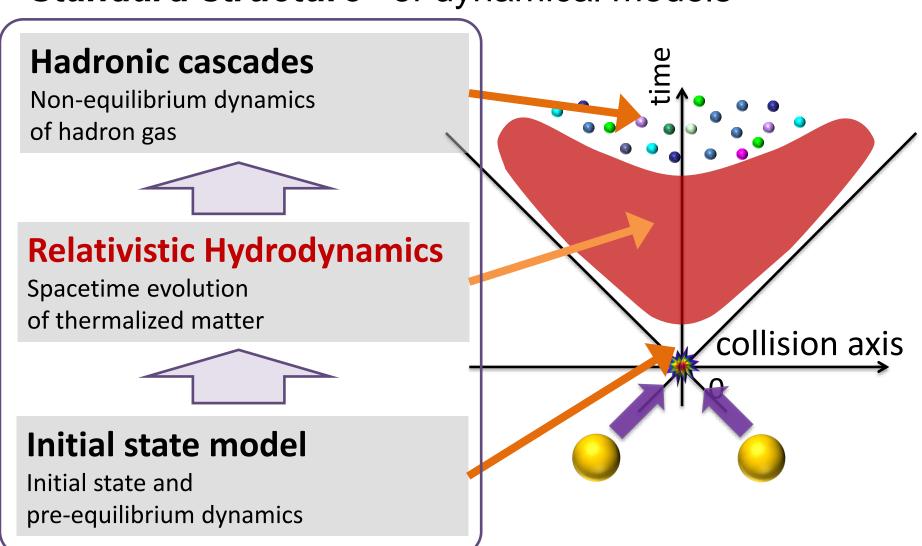
Dynamical models are needed

- ✓ Numerical simulation framework
- ✓ Quantitative description of whole reaction
- ✓ Pre-equilibrium/Hydro/Hadron gas stages

Equilibrium properties of QGP

Modern dynamical model

"Standard structure" of dynamical models



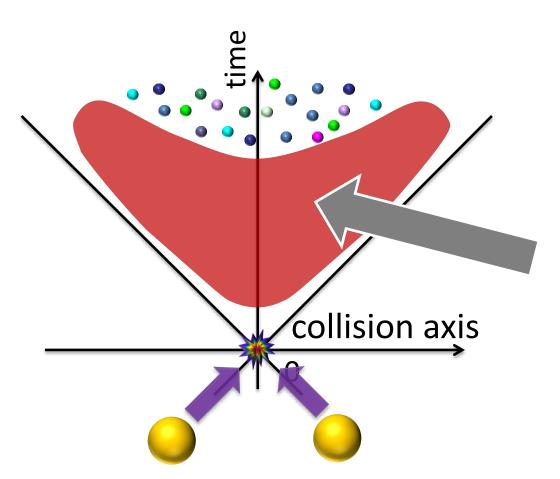
Brief history of dynamical models

- Ideal hydrodynamics (~2001) 完全流体
 P. F. Kolb et al.; D. Teaney et al.;
 P. Huovinen et al.; T. Hirano et al.
- Hybrid model (hydro + cascade) (~2001) A. Dumitru et al.; D. Teaney et al.; T. Hirano et al.
 ideal hydro + hadronic transport
- <u>Viscosity</u> (2008+) 粘性流体 H. Song *et al.*; S. Ryu *et al.* second-order causal hydrodynamics
- Event-by-event fluctuations (2011+)
 M. Gyulassy et al.; C. E. Aguiar et al.; Y.-Y. Ren, et al.; Z. Qiu et al.; H. Petersen et al.; K. Werner et al.; B. H. Alver et al.; B. Schenke et al.; A. K. Chaudhuri; P. Bozek et al.; L. Pang et al.; H. Zhang et al.; T. Hirano et al.
- Jet-induced medium response (2012+) Y. Tachibana, T. Hirano Back reaction to hydrodynamics
- <u>Hydrodynamic fluctuations</u> (2014+) 揺動流体 Thermal fluctuations of hydrodynamics

K. Murase, T. Hirano

- Critical dynamics (Recent) M. Bluhm, M. Nahrgang et al.; M. Sakaida et al.; S. Wu et al.
- Dynamical initialization (Recent) C. Shen et al.; Y. Akamatsu et al.; Y. Kanakubo et al.
- etc. (Classical Yang-Mills eq, Anisotropic hydro, Chiral magneto hydrodynamics, Non-eq chiral fluid dynamics, Hydro+, ...)

Hydrodynamic fluctuations



Hydrodynamic fluctuations

= Thermal fluctuations of hydro fields

WHY HYDRODYNAMIC FLUCTUATIONS?

Fluctuations in heavy-ion collisions

Final observables

– flow coefficients v_n , etc.

Matter response

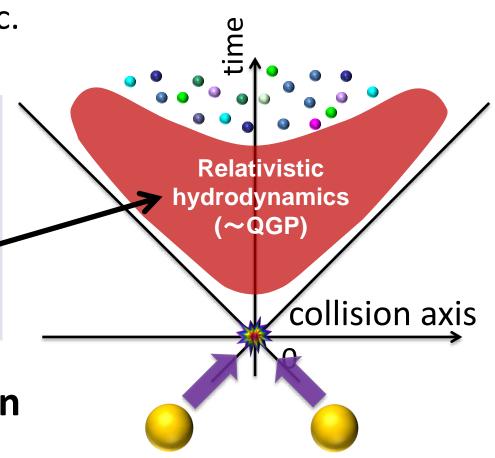
EoS, η , ζ , τ_R , etc.

Additional fluctuations

hydro fluctuations

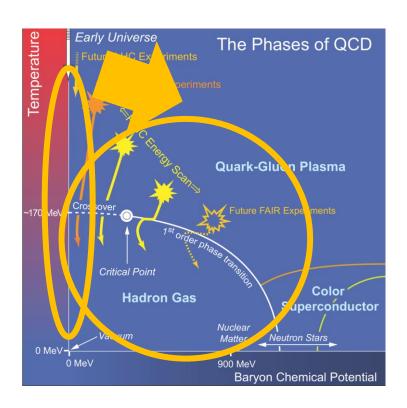
jets/mini-jets, etc

- Initial state fluctuation
 - nucleon distribution,
 - gluon/color fluctuations, etc.



QCD critical point search

Search of QCD critical point and 1st order phase transition



Schematic phase diagram of QCD [taken from the 2007 NSAC Long Range Plan]

Dynamical models for *high-energy* collisions (Hydro + cascade + ...)

Needed extensions

- EoS modeling
- critical fluctuations
- dynamical initialization
- dynamical core-corona separation

Dynamical models for *lower-energy* collisions?

Hydrodynamics

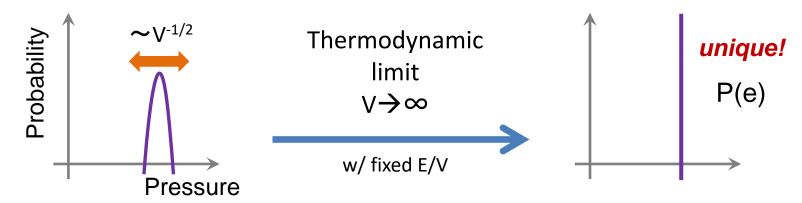
Hydro = Basically, conservation laws

e.g.
$$\partial_{\mu}T^{\mu\nu}=0, \qquad T^{\mu\nu}=eu^{\mu}u^{\nu}-P\Delta^{\mu\nu}+\pi^{\mu\nu}$$

"Hydrodynamics" works iff...

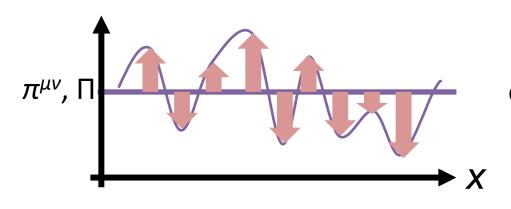
fluxes T^{ij} (\sim pressure, stress, etc.) are uniquely determined by conserved densities $T^{0\mu}$ (\sim e, u^{μ}).

e.g. EoS & Constitutive eqs. near equilibrium



Hydrodynamic fluctuations

Thermal fluctuations of fluid fields



spontaneous field fluctuations of fluid fields such as $\pi^{\mu\nu}$, Π , etc. at each t and each x

c.f. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (1959)

Fluctuation-dissipation relation (FDR)

Magnitude of *fluctuations* $\delta \pi$, etc. is determined by *dissipation* η , etc. (and temperature T)

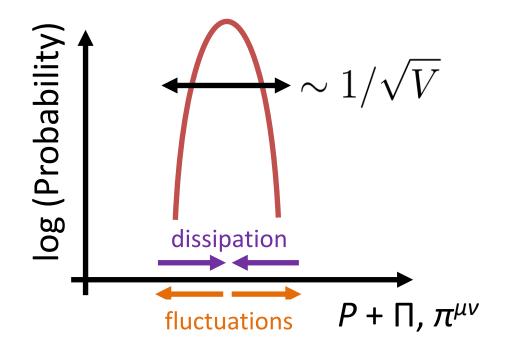
$$\langle \delta \pi^{\mu\nu}(x) \delta \pi^{\alpha\beta}(x') \rangle = 4T \eta \Delta^{\mu\nu\alpha\beta} \delta^{(4)}(x - x')$$

$$\eta \neq 0$$
 $\delta \pi \neq 0$

Fluctuation-dissipation theorem

Thermal distribution of fluid fields

$$\ln \Pr \sim S \sim V \cdot \left(s_{\text{eq}} - \frac{\tau_{\Pi} \Pi^2}{2T\zeta} - \frac{\tau_{\pi} \pi^{\mu\nu} \pi_{\mu\nu}}{4T\eta} \right)$$



FDR =

Balance of fluctuations and dissipation to maintain the thermal distribution

14

Hydrodynamic fluctuations

FDR:
$$\langle \delta \pi^2 \rangle \simeq 4T\eta / \Delta t \Delta x^3$$

 $(\Delta t, \Delta x$: typical length/time scale)

Water in a glass

$$\eta \simeq 10^{-3} \, [\text{Pa sec}] \, (\simeq 50 \, s)$$
 $T \simeq 300 \, [\text{K}] \, (\simeq 3 \times 10^{-9} \, [\text{MeV}])$
 $\Delta x \simeq 10^{-3} \, [\text{m}]$
 $\Delta t \simeq 10^{-1} \, [\text{sec}]$
 $\delta \pi \simeq 4 \times 10^{-8} \, [\text{Pa}]$
 $P \simeq 10^{5} \, [\text{Pa}]$
 $\delta \pi / P = 4 \times 10^{-13}$

QGP in heavy-ion collisions

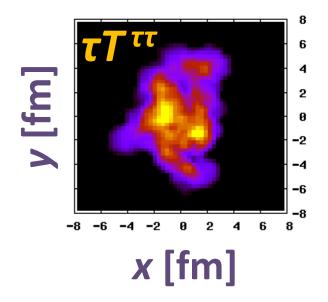
$$\eta \simeq 0.1 \, s \simeq 0.2 \, [\text{fm}^{-3}]$$
 $T \simeq 300 \, [\text{MeV}]$
 $\Delta x \simeq 1 \, [\text{fm}]$
 $\Delta t \simeq 1 \, [\text{fm}]$
 $\delta \pi \simeq 2 \times 10^2 \, [\text{MeV/fm}^3]$
 $P \simeq 4 \times 10^3 \, [\text{MeV/fm}^3]$
 $\delta \pi / P = 0.05$

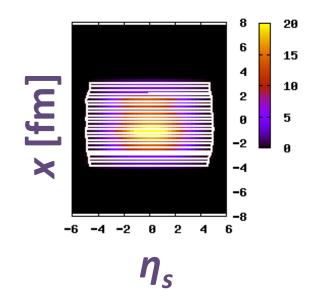
Hydrodynamic fluctuations are not negligible in QGP

Hydrodynamic evolution

without HF

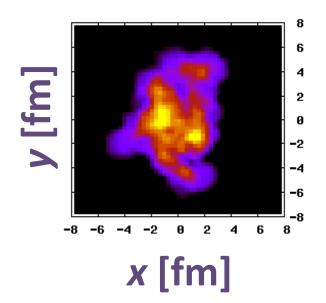
conventional 2nd-order viscous hydro

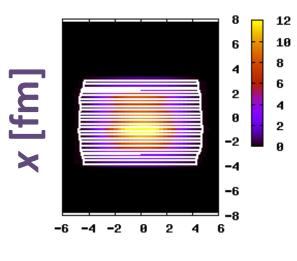




with HF

2nd-order fluctuating hydro





 η_s

DISCUSSIONS

1. Smeared fluctuating hydrodynamics

Noise terms with autocorrelations $\sim \delta^{(4)}(x-x')$ Hydrodynamic eqs are non-linear

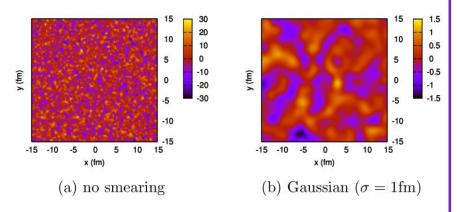
→ Continuum limit is non-trivial

Regularization: cutoff length λ (or cutoff momentum $\Lambda=1/\lambda$)

coarse-graining scale > microscopic scale

Noise terms w(x) are smeared by, e.g., Gaussian of width $\sigma = \lambda$

$$w(\boldsymbol{x})^{\sigma} = \frac{1}{(2\pi\sigma^2)^{3/2}} \int d^3x' \exp\left(-\frac{(\boldsymbol{x}-\boldsymbol{x}')^2}{2\sigma^2}\right) w(\boldsymbol{x}').$$



2. Stochasitic Integrals

Structure of 2nd order fluctuating hydrodynamics

$$\begin{cases} dU = f_1(U,\Gamma)d\tau, \\ d\Gamma = f_2(U,\Gamma)d\tau + g_2(U) \circ \underline{dB}, \end{cases}$$
 noise

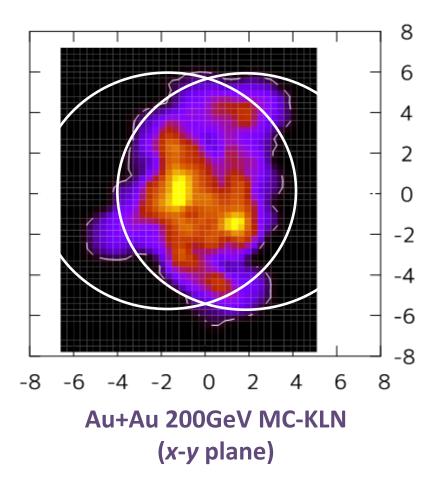
$$U=(e,u^{\mu},n_i)$$
 $\Gamma=(\Pi,\pi^{\mu\nu},\nu_i^{\mu})$ au : proper time

→ No difference between Ito/Stratonovich SDE

$$\begin{split} g_2(U) \circ dB &= g_2(U) \cdot dB + \frac{1}{2} \left[\frac{\partial g_2}{\partial U} dU + \frac{\partial g_2}{\partial \Gamma} d\Gamma \right] dB \\ &= g_2(U) \cdot dB. \end{split}$$

Ito product

Matter created in nuclear collisions is not *static* and *homogeneous*



Usual FDR relies on the linear-response of *global equilibrium* to small perturbations

How is FDR modified in *inhomogeneous* and *non-static* matter?

<u>Differential form FDR for simplified IS</u>

$$\begin{split} \langle \xi_\Pi(x)\xi_\Pi(x')\rangle &= \left(2 + \tau_\Pi \mathrm{D} \ln \frac{T\zeta}{\tau_\Pi} - \tau_\Pi \theta\right) T\zeta \delta^{(4)}(x-x'), \\ \langle \xi_\pi^{\mu\nu}(x)\xi_\pi^{\alpha\beta}(x')\rangle &= 2\left[\left(2 + \tau_\pi \mathrm{D} \ln \frac{T\eta}{\tau_\pi} - \tau_\pi \theta\right) \Delta^{\mu\nu\alpha\beta} + \tau_\pi \mathcal{D}\Delta^{\mu\nu\alpha\beta}\right] T\eta \delta^{(4)}(x-x'), \\ \langle \xi_i^\mu(x)\xi_j^\alpha(x')\rangle &= -2T\kappa_{ij}\Delta^{\mu\alpha}\delta^{(4)}(x-x') \\ &\quad - \Delta^{\mu\alpha}[K_{ij}^A(x)\mathcal{D} - K_{ij}^A(x')\mathcal{D}']\delta^{(4)}(x-x') \\ &\quad + \sum_{k=1}^n \left\{-\Delta^{\mu\alpha}\left[\tau_{ik}\mathrm{D}T\kappa_{kj} - (\mathrm{D}\tau_{ik})T\kappa_{kj} - \tau_{ik}\theta T\kappa_{kj}\right]^\mathrm{S} - K_{ij}^\mathrm{S}\mathcal{D}\Delta^{\mu\alpha}\right\}\delta^{(4)}(x-x'), \\ \mathrm{where} \ K_{ij}^\mathrm{S/A}(x) &= \sum_{k=1}^n T(x)(\tau_{ik}(x)\kappa_{kj}(x) \pm \tau_{jk}(x)\kappa_{ki}(x))/2, \ \mathrm{and} \ [\circ_{ij}]^\mathrm{S} = (\circ_{ij} + \circ_{ji})/2. \\ \mathcal{D}\Delta^{\mu\nu\alpha\beta} &= \Delta^{\mu\nu}{}_{\kappa\lambda}\Delta^{\alpha\beta}{}_{\gamma\delta}\mathrm{D}\Delta^{\kappa\lambda\gamma\delta}, \qquad \text{complicated expression} \\ \mathcal{D}\Delta^{\mu\alpha} &= \Delta^{\mu}{}_{\kappa}\Delta^{\alpha}{}_{\gamma}\mathrm{D}\Delta^{\kappa\gamma}. \qquad \text{due to the tensor structure...} \end{split}$$

Essential structure

$$\langle \xi(x)\xi(x')\rangle = \left(2 + \underline{\tau_R} \operatorname{D} \ln \frac{T\kappa}{\tau_R} - \underline{\tau_R} \theta\right) T\kappa \delta^{(4)}(x - x').$$

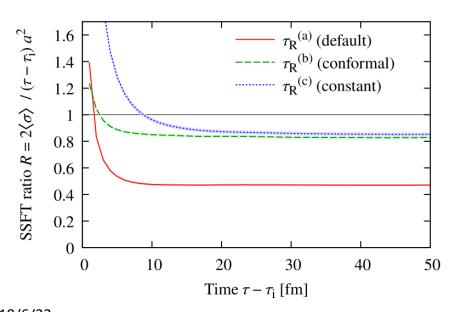
new modification terms ∝ relaxation time

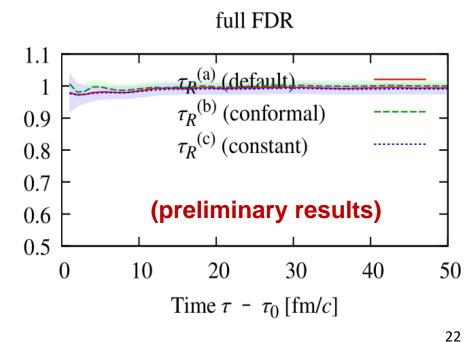
SSFT breaking by relaxation times was actually artifact.

With the FDR modification, SSFT recovers:

$$\langle \xi(x)\xi(x')\rangle = \left(2 + \tau_R D \ln \frac{T\kappa}{\tau_R} - \tau_R \theta\right) T\kappa \delta^{(4)}(x - x').$$

$R \neq 1$ SSFT breaking





When background is non-static / non-uniform, FDR have corrections:

$$\langle \xi(x)\xi(x')\rangle = \left[2 + \tau_R D \ln \frac{T\kappa}{\tau_R} - \tau_R \theta\right] T\kappa \delta^{(4)}(x - x')$$

K. Murase, Ph.D. Thesis (The University of Tokyo), Sec. 4.4 (2015)

Otherwise, Fluctuation theorem (FT) from non-equilibrium statistical mechanics is broken in 2nd-order fluctuating hydrodynamics

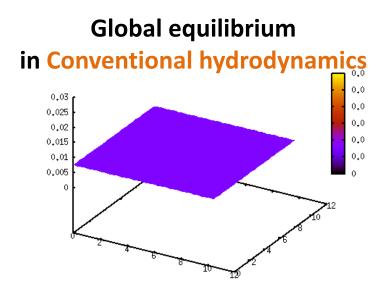
T. Hirano, R. Kurita, K. Murase, arXiv:1809.04773

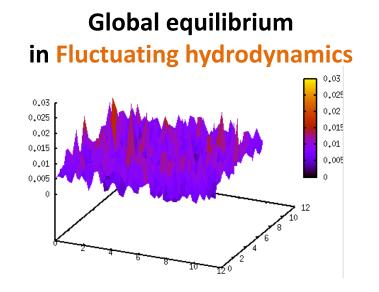
4. Renormalization of EoS/viscosity

λ-dependence of EoS and transport coefficients

· e.g. Decomposition of energy density in equilibrium

$$\langle T^{00} \rangle =$$
 e = $\langle e_{\lambda} \rangle$ + $\langle (e_{\lambda} + P_{\lambda}) u_{\lambda}^{2} + \pi_{\lambda}^{00} \rangle$ internal energy in ordinary sense energy energy





4. Renormalization of EoS/viscosity

λ-dependence of EoS and transport coefficients

· e.g. Decomposition of energy density in equilibrium

$$\langle T^{00} \rangle =$$
 e = $\langle e_{\lambda} \rangle$ + $\langle (e_{\lambda} + P_{\lambda}) u_{\lambda}^{2} + \pi_{\lambda}^{00} \rangle$ internal energy in ordinary sense energy energy

- Every "macroscopic" quantities (e_{λ} , u_{λ} , etc.) are redefined for each cutoff λ .
- Macroscopic relations such as viscosity, EoS, etc. should be renormalized not to change the bulk properties (k→0, ω→0)
- Additional terms in hydrodynamic eqs: "long-time tail"

P. Kovtun, et al., Phys. Rev. D68, 025007 (2003); P. Kovtun, et al., Phys. Rev. D84, 025006 (2011); P. Kovtun, J. Phys. A45, 473001 (2012); Y. Akamatsu, et al., Phys. Rev. C95, 014909 (2017); Y. Akamatsu, et al., Phys. Rev. C97, 024902 (2018)

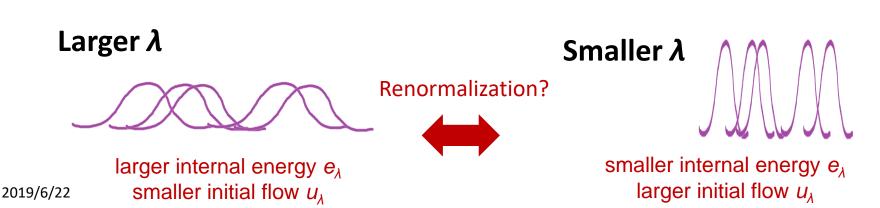
5. Other renormalization

Cooper-Frye formula:

How to sample hadrons from $(e_{\lambda}, u_{\lambda}^{\mu}, \pi_{\lambda}^{\mu\nu}, \Pi_{\lambda})$?

• Initialization model (from partons, etc.):

Width and shape of smearing kernel should match with those in fluctuating hydrodynamics?



SUMMARY

Summary

- Hydrodynamic fluctuations are thermal fluctuations of fluid fields whose power is determined by FDR
- Many interesting topics on dynamical modeling of hydrodynamic fluctuations:
 - FDR corrections for causal hydro
 - Fluctuation-theorem
 - Renormalization of EoS/transport properties
 - Renormalization of initial condition
 - Renormalization of f(p) in Cooper-Frye