クォーコニウム

赤松 幸尚 (大阪大学)

チュートリアル研究会「高エネルギー重イオン衝突の物理」 2019 年 8 月 19-21 日@理化学研究所

クォーコニウムに関する基本的なこと

クォーコニウム: 重クォーク対の束縛状態

発見の歴史

- ▶ 1974 年 J/ψ 粒子 (p + Be/e⁺ + e⁻) → チャームクォークの発見
- ▶ 1977 年 ↑ 粒子 (p + Cu, Pt) → ボトムクォークの発見

 $J^P=1^-$ のクォーコニウム [Particle Data Group (16)]

		* - * [· · · · · · · · · · · · · · · · · ·
	質量	束縛エネルギー *
J/ψ	3.097 GeV	$\sim 0.6~{\rm GeV}$
$\psi(2S)$	3.686 GeV	$\sim 0.05~{\rm GeV}$
$\Upsilon(1S)$	9.460 GeV	$\sim 1~{\sf GeV}$
$\Upsilon(2S)$	10.023 GeV	$\sim 0.5~{\rm GeV}$
$\Upsilon(3S)$	10.355 GeV	$\sim 0.2~{\rm GeV}$

^{*} $2m_{D^\pm}=3.739~{
m GeV}$ 、 $2m_{B^\pm}=10.559~{
m GeV}$ から計算した

重クォークの間に働く力

T=0

離しすぎると紐を伸ばすよりも軽いクォーク対を生成する方が得になる (string breaking)

クォーコニウムを QGP 環境中に置いたら?

 $T>T_c$

クォークやグルーオンが自由に動けるようになり、重クォークのカラー電荷が遮蔽される

ちょっと雑に量子力学

具体的なポテンシャルで考えてみる

$$V(r;T=0) = \underbrace{-\frac{\alpha}{r}}_{7-\square >} + \underbrace{\sigma r}_{\text{All}} \rightarrow V(r;T>T_c) = -\frac{\alpha}{r} \underbrace{\exp[-m_D r]}_{\text{isim}}$$

ポテンシャルが弱いと束縛状態がなくなる

$$E(r) = \underbrace{2m}_{\text{gb}} + \underbrace{\frac{1}{2mr^2}}_{\text{bblak}+\nu + \nu} + \underbrace{V(r)}_{\text{ffyse}}, \quad \frac{\partial E(r)}{\partial r} \Big|_{r=r_{Q\bar{Q}}} = 0$$

- ightharpoonup 変分法で解 $r_{Q\bar{Q}}$ が見つかるのは $m_D \leq 0.84 m lpha$
- $ightharpoonup m_D(T) \sim T$ なので、高温になると束縛状態は存在しない
- ▶ 重クォークの質量が重いほど、束縛状態は高温まで生き残る

 J/ψ の収量は $T\sim (1.2-1.5)T_c$ を境に急減するはず(J/ψ suppression)[Matsui-Satz (86)]

スペクトル関数とは何か?

物質から、ある量子数やエネルギー・運動量を持った励起を起こせる度合い

QGP 中のスペクトル関数で何がわかるか?

QGP 中の粒子とエネルギー・運動量のやりとりが起こる

- ▶ 熱的環境ではスペクトル関数がぼやける
- ▶ 多少ぼやけてもピーク構造があると、束縛状態は生き残っている
- ▶ 連続的なスペクトルになると、束縛状態は消滅している

格子 QCD 計算+最大エントロピー法

なるほど $1.7T_c$ くらいまで J/ψ は生き残っていそう

他にもいろんな計算がある

深い束縛状態ほど高温まで生き残りそう しかし、相転移のように明確な溶解温度の定義は存在しない

重イオン衝突での重クォーク対生成

重クォーク対生成の数(≫ クォーコニウムの数)をグラウバー模型で見積もってみよう

ullet ${
m Au+Au}$ の中心衝突で $N_{
m coll}/\sigma_{NN}^{
m in} \simeq 30/{
m mb}$ [Yagi-Hatsuda-Miake Fig.10.11] なので

	$\sqrt{s_{NN}}$	$N_{c\bar{c}}$	$N_{b\bar{b}}$
RHIC	200 GeV	24	0.03
LHC	5500 GeV	240	1

重イオン衝突でのクォーコニウム生成

重クォーク対 \gg クォーコニウムなので LHC で car c の再結合は無視できないかもしれない

J/ψ のデータ

束縛状態の生き残りだけを考えた場合、 $R_{ m AA} \simeq J/\psi$ の存在確率

- ▶ High multiplicity の方が高温の QGP ができるので、 R_{AA} は下がるだろう
- lacktriangle LHC の方が RHIC よりも高温の QGP ができるので、 $R_{
 m AA}$ は下がるだろう

RHIC の J/ψ は束縛状態の生き残りだけで説明できそう LHC の J/ψ 生成には再結合が無視できない

↑ のデータ

LHC の Υ と high p_T の $J/\psi, \psi'$ は束縛状態の生き残りだけで説明できそう

おわりに

理論家は考えてみよう

- ▶ QGP 中のクォーコニウムのスペクトル関数=観測されるレプトン対のスペクトル?
- ポテンシャルとスペクトル関数の関係はどうなっているか?

最先端へのキーワード

- ▶ ポテンシャルの定義:自由エネルギー、内部エネルギー、実時間ポテンシャル
- ▶ 量子開放系の概念: Lindblad 形式、Stochastic unravelling

個人的な未解決問題

- ▶ 量子開放系でエントロピー力をどう記述するか?
- ▶ Gluo-dissociation の適切な記述 / 時間スケール