Nuclear shell model calculations – basics and practices –

3. Inside "KSHELL"

Noritaka Shimizu

Center for Nuclear Study, the University of Tokyo

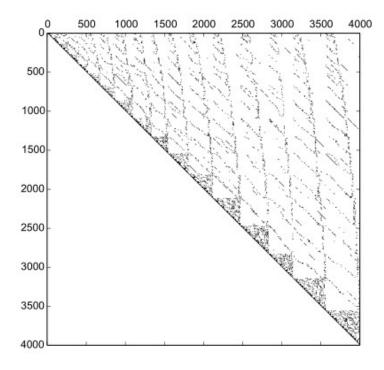
Hamiltonian matrix in the LSSM

⇒ Real symmetric sparse matrix

Nuclide	Space	Basis dim.	Sparsity	Storage (GB)
²⁸ Si	sd	9.4×10^{4}	6×10^{-3}	0.2
⁵² Fe	pf	1.1×10^{8}	1×10^{-5}	720
⁵⁶ Ni	pf	1.1×10^{9}	2×10^{-6}	9600

⁴⁴Ti M=0 space in pf-shell (4,000 dim.)

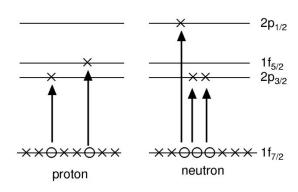
C.W. Johnson et al., CPC 2013



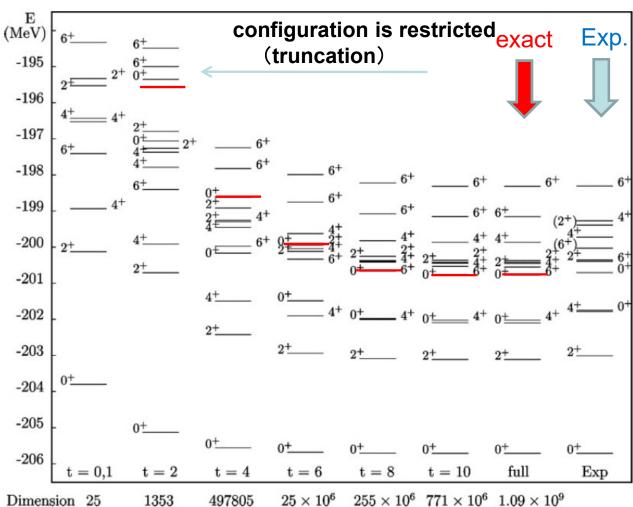
- The Lanczos algorithm is quite efficient to obtain low-lying states.
- In the KSHELL code, the matrix elements of the many-body Hamiltonian is generated on-the-fly every matrix-vector product to suppress the memory usage.

Truncation of the model space

⁵⁶Ni ... Z=N=28 doubly closed with N=Z=28 magic, truncation of particlehole excitation is expected to work well

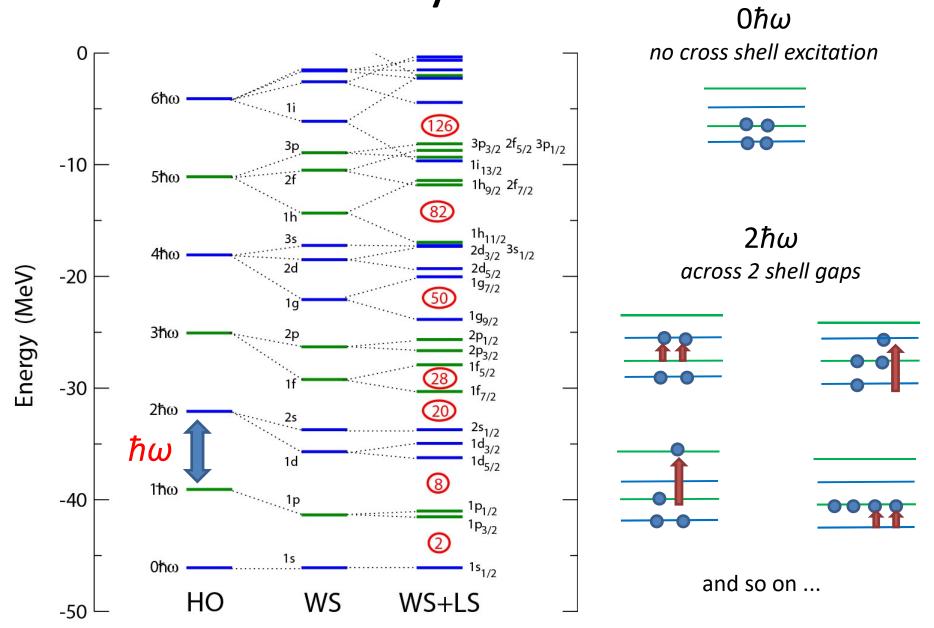


Number of p-h excitation from f7/2 is restricted (*t*)



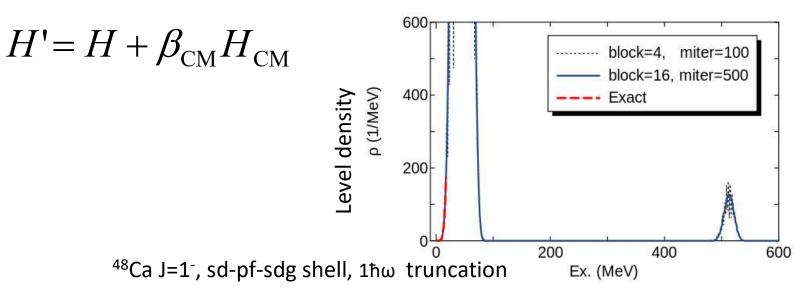
Ref. M. Horoi et al., Phys. Rev. C78, 014318(2008)

Truncation by $N\hbar\omega$ excitation



Contamination of center-of-mass motion

- In the model space beyond $0\hbar\omega$, center-of-mass motion is contaminated.
- Lawson method
 - Lift up spurious center-of-mass excited states by adding CoM Hamiltonian



- Center-of-mass motion can be clearly removed in full $N\hbar\omega$ model space
- If not full space, separation is approximately achieved by large β_{CM} ... controversial

Truncation in KSHELL code

```
truncation scheme ?
         0: No truncation (default)
         1: particle-hole truncation for orbit(s)
         2: hw truncation
         3: Both (1) and (2)
            n, l, j, tz, spe
                 3 7 -1 -8.624 p 0f7/2
          1 1 3 -1 -5.679 p_1p3/2
0 3 5 -1 -1.383 p_0f5/2

      4
      1
      1
      1
      -1
      -4.137
      p_1p1/2

      5
      0
      3
      7
      1
      -8.624
      n_0f7/2

      6
      1
      1
      3
      1
      -5.679
      n_1p3/2

      7
      0
      3
      5
      1
      -1.383
      n_0f5/2

      8
      1
      1
      1
      1
      -4.137
      n_1p1/2

 specify # of orbit(s) and min., max. occupation numbers for restriction
 # of orbit(s) for restriction? (<CR> to quit): 2,3,4,6,7,8
 min., max. restricted occupation numbers for the orbit(s) (or max only): 0,2
 # of orbit(s) for restriction? (<CR> to quit):
```

Advanced option: one-body transition density

- Concerning the transition and moments, it would be better to replace the H.O. wave function by e.g. Woods-Saxon wave function.
- In this case, the KSHELL code provides one-body transition density (OBTD) by "is_obtd=.true." option.

$$< f||\hat{O}^{\lambda}||i> = < n\omega J||\hat{O}^{\lambda}||n\omega'J'> = \sum_{k_{\alpha}k_{\beta}} \text{OBTD}(fik_{\alpha}k_{\beta}\lambda) < k_{\alpha}||O^{\lambda}||k_{\beta}>$$

$$OBTD(fik_{\alpha}k_{\beta}\lambda) = \frac{\langle n\omega J || [a_{k_{\alpha}}^{+} \otimes \tilde{a}_{k_{\beta}}]^{\lambda} || n\omega' J' \rangle}{\sqrt{(2\lambda + 1)}}$$

Pitfall: Phase convention

For further study, you may want to construct your own operator. Pay attention to phase conventions.

Condon-Shortley vs. Biedenharn-Rose convention

$$-Y_m^{(l)}(\theta,\phi) \quad \Leftrightarrow \quad i^l Y_m^{(l)}(\theta,\phi)$$

spin-orbit coupling

$$-j = l + s \iff j = s + l$$

Radial wave function

$$- R_{nl}(+\varepsilon) > 0 \iff R_{nl}(+\infty) > 0$$

$$- n = 0,1,2,... \iff n = 1,2,3,...$$

Lanczos method

- Suppose large real symmetric sparse matrix and obtain some lowest eigenvalues...
- One of the Krylov-subspace methods

$$\mathcal{K}_{l_m}(H, \mathbf{v}_1) = \{\mathbf{v}_1, H\mathbf{v}_1, H^2\mathbf{v}_1, H^3\mathbf{v}_1, \cdots, H^{l_m-1}\mathbf{v}_1\}$$

 Ritz value ... eigenvalues of submatrix in Krylov subspace

Power method

 Suppose large real symmetric sparse matrix and obtain the lowest (largest) eigenvalues...

Lanczos method : algorithm

- Prepare initial state (e.g. random) u_0
- Iterate

Matrix-vector product, bottle neck!
$$a_k = u_k^T A u_k \qquad b_k = u_k^T A u_{k-1} \qquad \text{Gram-Schmidt orthogonalization}$$

$$u'_{k+1} = A u_k - a_k u_k - b_k u_{k-1} \qquad \text{Normalize}$$

$$u_{k+1} = u'_{k+1} / \sqrt{u'_{k+1}^T u_{k+1}} \qquad T = u_i^T A u_j = \begin{bmatrix} a_0 & b_0 & & & \\ b_0 & a_1 & b_1 & & \\ b_1 & a_2 & b_3 & & \\ & & b_2 & a_3 & b_3 \\ & & & b_3 & \dots & \dots \end{bmatrix}$$
 • Solve eigenvalue problem of tri-diagonal matrix by bisection method

- tri-diagonal matrix by bisection method
- N.B. $u_i^T u_{k-1} = \delta_{ii}$ is satisfied mathematically. However, as k increases, this orthogonality relation is often broken by round-off error

Convergence of Lanczos method

⁵⁶Ni shell-model calc. 10⁹-dimension sparse matrix → 4GB Lanczos vector

10 lowest eigenvalues ... 241 iterations -190₋₋ (MeV) -195-196-197-195 -198 Energy (MeV) -199-201-202-200 -203 -204-205-206 255×10^6 771×10^6 1.09×10^9 Dimension 25 1353 25×10^{6} -205 Excitation energies of ⁵⁶Ni 100 200 Ref. M. Horoi et al. Phys. Rev. C73 061305R (2006)

code "KSHELL"

of iterations

9 sec/iteration @FX10 240 nodes (SPARC 64 IXfx, 3840 cores), total 35min.

Matrix representation

$$|\Psi\rangle = u_1 + u_2 + u_3 + u_3 + \dots$$

$$= u_1 |m_1\rangle + u_2 |m_2\rangle + u_3 |m_3\rangle + \dots$$

$$= u_1 |m_1\rangle + u_2 |m_2\rangle + u_3 |m_3\rangle + \dots$$

Solve eigenvalue problem of the Hamiltonian matrix

$$H_{ij} = \left\langle m_i \left| H \right| m_j \right\rangle$$

Why is it sparse matrix?

Hamiltonian is two-body (or three-body) interaction:

$$H = \sum_{ij} t_{ij} c_i^{\dagger} c_j + \sum_{ijkl} v_{ijkl} c_i^{\dagger} c_j^{\dagger} c_l c_k$$

e.g. $\langle m_1 | H | m_3 \rangle = 0$ for two-body int.

Configuration: bit representation

$$|\Psi\rangle = u_{1} + u_{2} + u_{3} + u_{3} + u_{4} + u_{5} + u_{5}$$

m	0	1	2	3	4	5	6	7	Decimal num.
m ₁ >	1	1	0	1	0	0	1	0	75
m ₂ >	1	0	0	1	0	1	1	0	105
m ₃ >	0	0	0	0	1	1	1	1	240

"On-the-fly" operation of matrix-vector product

Number of Hamiltonian matrix element $H_{ij} = \langle m_i | H | m_j \rangle$ is too huge to store on memory

Only matrix-vector product is required for Lanczos method

$$0_{4} 0_{5} 0_{6} 0_{7}$$

 $0_{0} 0_{1} 0_{2} 0_{3}$

$$\left| m_3 \right\rangle = c_4^{\dagger} c_7^{\dagger} c_1 c_0 \left| m_1 \right\rangle$$

m	0	1	2	3	4	5	6	7	Decimal num.
m ₁ >	1	1	0	1	0	0	1	0	75
m ₂ >	1	0	0	1	0	1	1	0	105
m ₃ >	0	0	0	0	1	1	1	1	240

 $c_4^\dagger c_7^\dagger c_1 c_0$ off 1, 0 bits and on 4, 7 bits

Binary search to find where the obtained number is.

Further acceleration: proton-neutron factorization of wave function

Each M-scheme basis state is a product of proton and neutron configurations

$$|m\rangle = |m_\pi\rangle \otimes |m_\upsilon\rangle$$

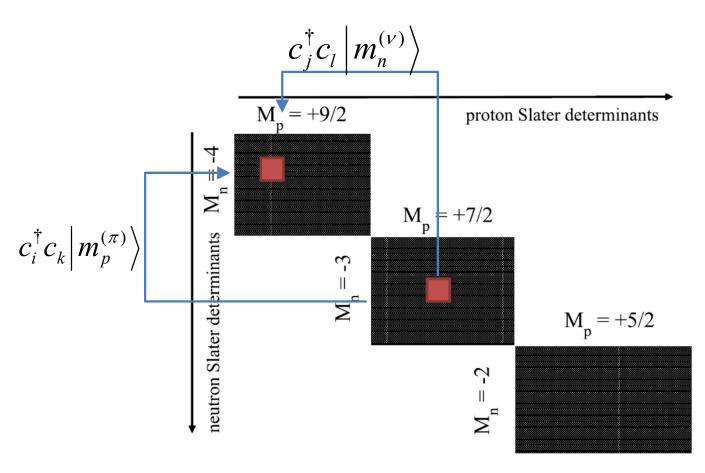
$$M = M_p + M_n \qquad Jz$$

$$\Pi = \Pi_p \times \Pi_n \qquad {
m Parity}$$

$$\left|\Psi\right\rangle = \sum_{m} v_{m} \left|m\right\rangle = \sum_{\substack{M_{p}, \Pi_{p} \ m_{p} \in M_{p}, \Pi_{p} \\ m_{n} \in M_{n}, \Pi_{n}}} \left|m_{p}\right\rangle \otimes \left|m_{n}\right\rangle$$

For acceleration of the matrix-vector product of the protonneutron interaction (bottle neck)

$$c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k}\left|m_{p}^{(\pi)}\right\rangle\left|m_{n}^{(\nu)}\right\rangle=c_{i}^{\dagger}c_{k}\left|m_{p}^{(\pi)}\right\rangle c_{j}^{\dagger}c_{l}\left|m_{n}^{(\nu)}\right\rangle=\left|m_{p'}^{(\pi)}\right\rangle\left|m_{n'}^{(\nu)}\right\rangle$$



In advance, proton one-body interaction $c_i^\dagger c_k \Big| m_p^{(\pi)} \Big\rangle$ and neutron one-body interaction $c_i^\dagger c_l \Big| m_n^{(\nu)} \Big\rangle$ are operated to accelerate the proton-neutron interaction.

Block Lanczos method

Block Krylov subspace method

$$\mathcal{K}_m(H, \mathbf{V}_1) = \{ \mathbf{V}_1, H\mathbf{V}_1, H^2\mathbf{V}_1, \cdots, H^{m-1}\mathbf{V}_1 \} \quad \mathbf{V}_1 = (\mathbf{v}_1^{(1)}, \mathbf{v}_1^{(2)}, \cdots, \mathbf{v}_1^{(q)})$$

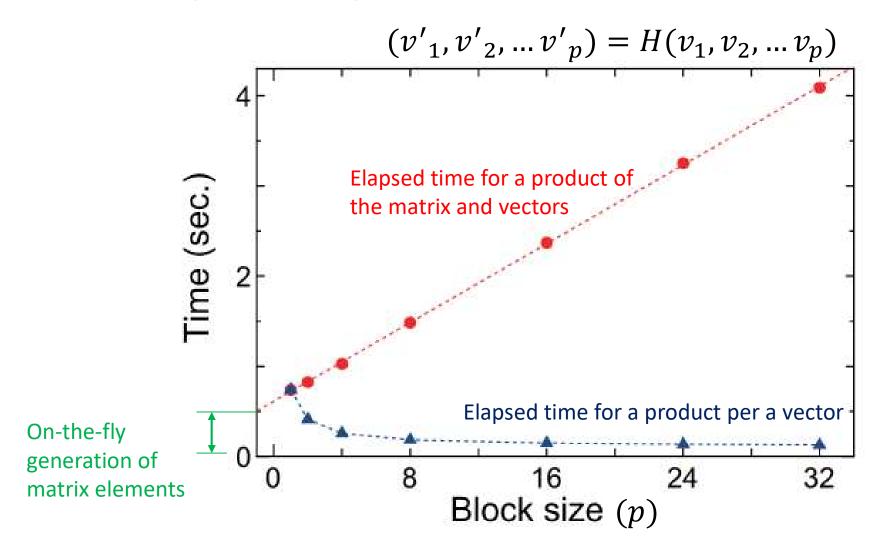
a block of vectors V_1 be arbitrary vectors with $V_1^T V_1 = 1$ and $\beta_{-1} := 0$.

end for

 α_i and β_i are $p \times p$ block matrices

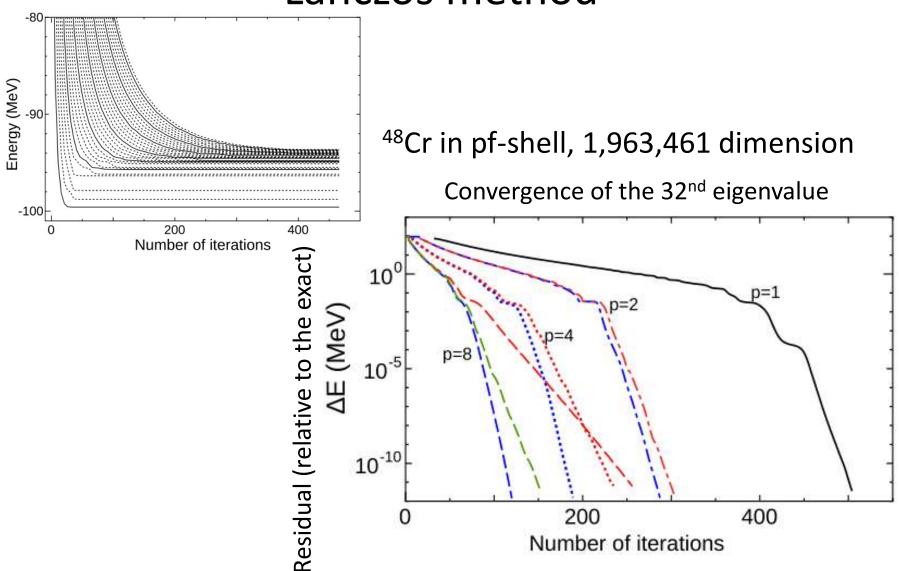
Performance improvement of block algorithm

Elapsed time of a product of the matrix and block vectors



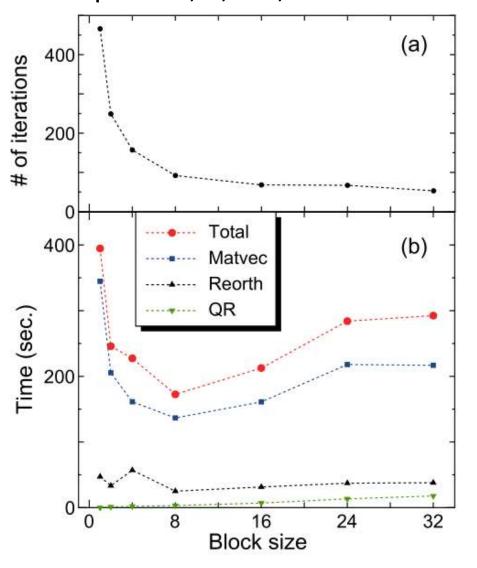
⁴⁸Cr in pf-shell, 1,963,461 dimension, Xeon 20 cores

Performance improvement by the block Lanczos method

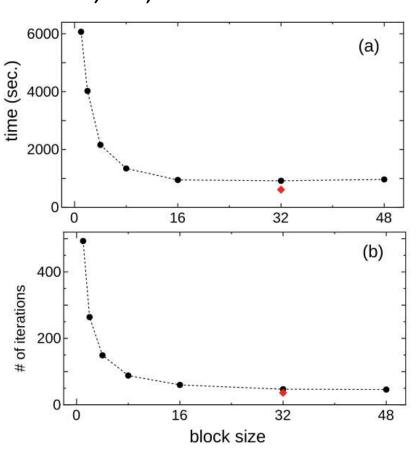


Performance of block Lanczos method

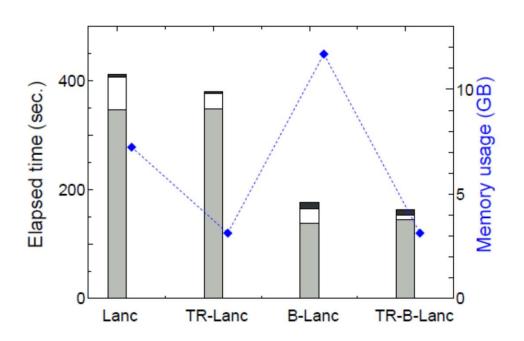
⁴⁸Cr in pf-shell, 1,963,461 dimension



¹¹²Sn w/ ¹⁰⁰Sn core 6,210,638 dimension



Further acceleration: Thick-restart block method

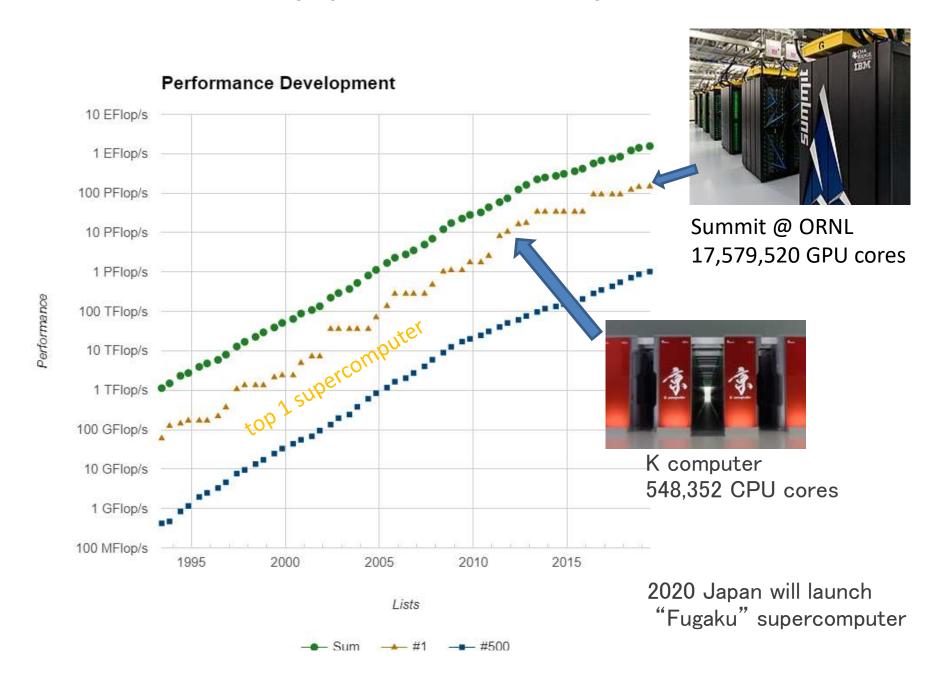


When the number of the Lanczos vectors reaches $l_m = 200$, the 20 lowest eigenvectors in the subspace is only taken and restart the Lanczos iterations.

FIG. 8: Total elapsed time to obtain the 32 lowest eigenvalues of 48 Cr with the simple Lanczos (Lanc), thick-restart Lanczos (TR-Lanc), block Lanczos (B-Lanc), and thick-restart block Lanczos (TR-B-Lanc) methods. The shaded, open, and filled bars denote the elapsed times of matrix-vectors products, reorthogonalizations, and the others, respectively. The memory usage to store the Lanczos vectors is shown as the blue diamonds with the dashed line. We take the block size q = 8 for the block methods and the maximum number of the Lanczos vectors $l_m = 200$ for the thick-restart methods.

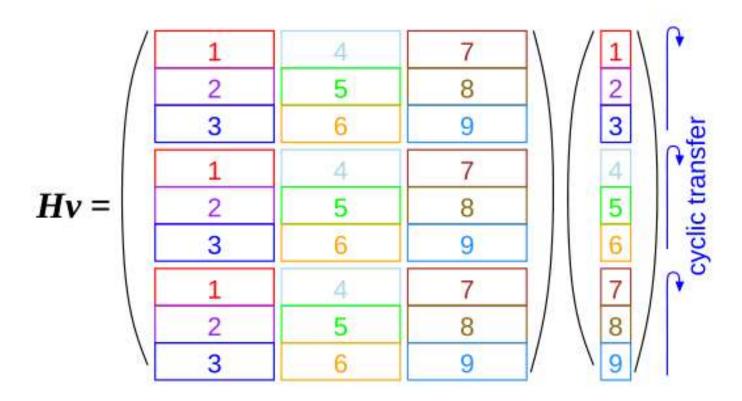
N. Shimizu et al., Comp. Phys. Comm. in print.

Massively parallel computation



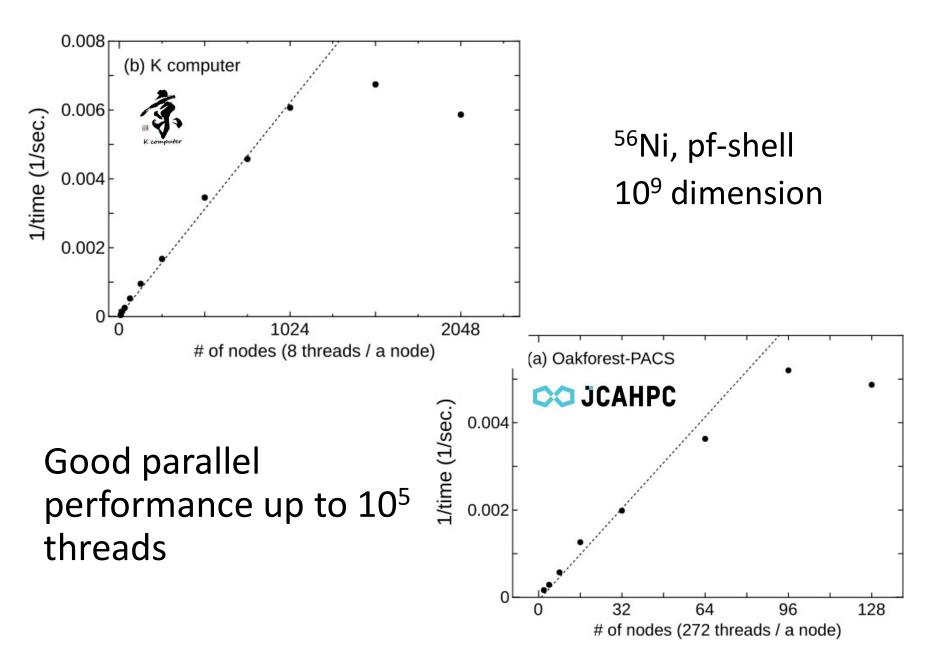
Parallel computation of matrix-vector product in the KSHELL code

E.g. assume 9 computer nodes



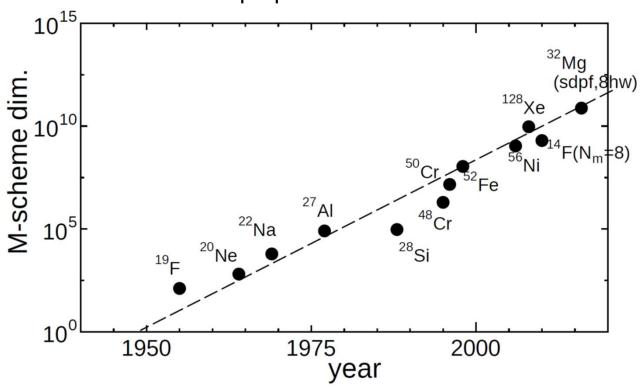
- Diagonal blocks are equally distributed.
- Communication volume per matrix-vector product is the smallest, $2V/\sqrt{N}$ (V: size of a vector, N: number of nodes)
- A vector is split equally for reorthogonalization

Parallel performance (strong scaling)



Progress in computer : *M*-scheme dimension vs. year

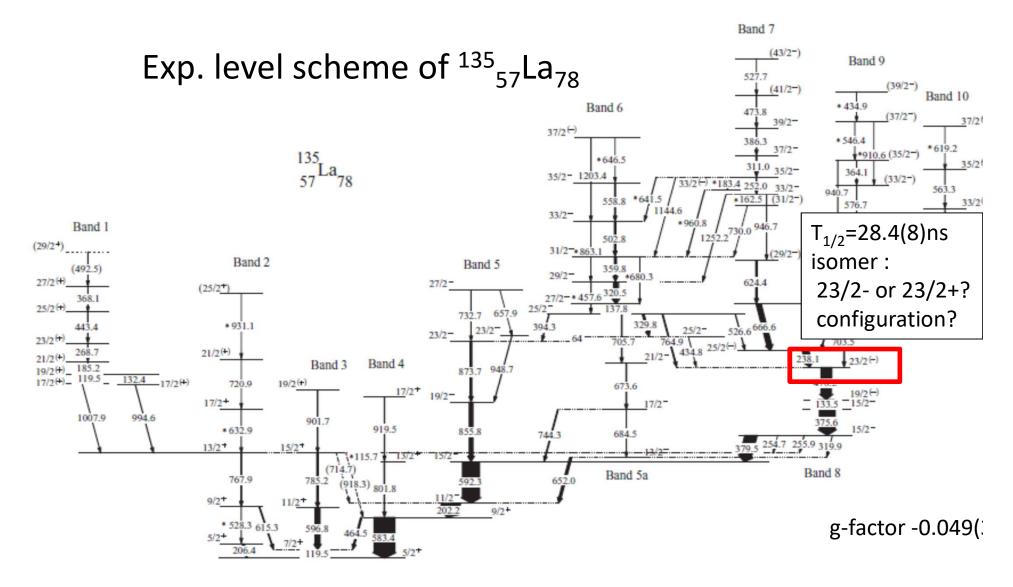
Computation cost is almost proportional to the *M*-scheme dimension



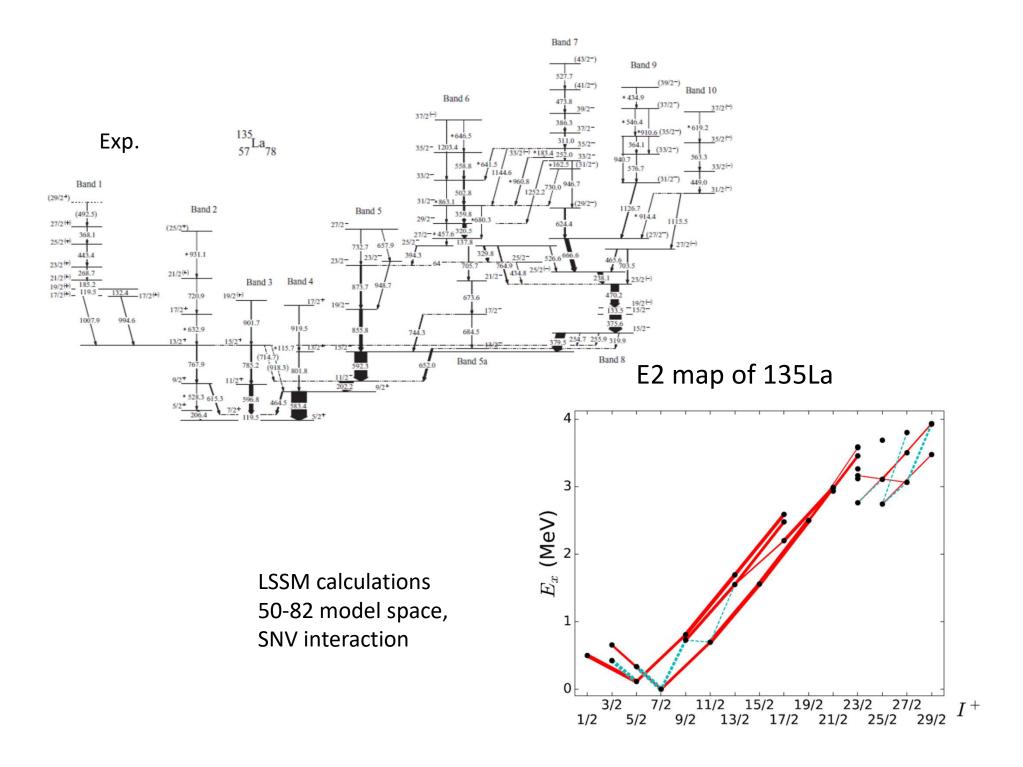
1950 Mayer & Jensen, single-particle SM

Current limit : ~10¹¹ M-scheme dim. ⇒ 800 GB / a vector

Odd-mass medium-heavy nuclei

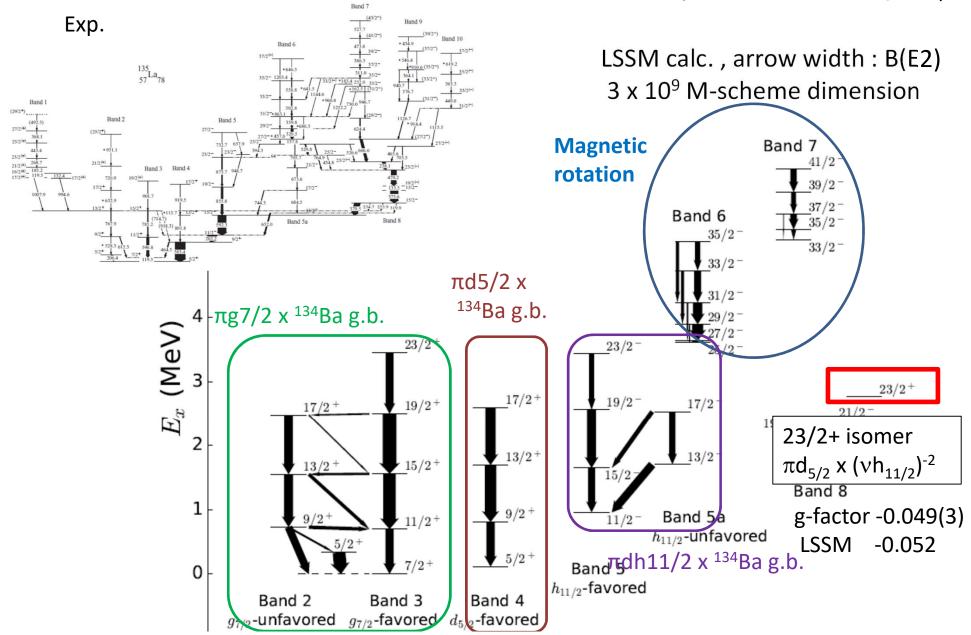


R. Garg et al., PRC 87, 034317 (2013), R. Leguillion et al., PRC 88, 044309 (2013)

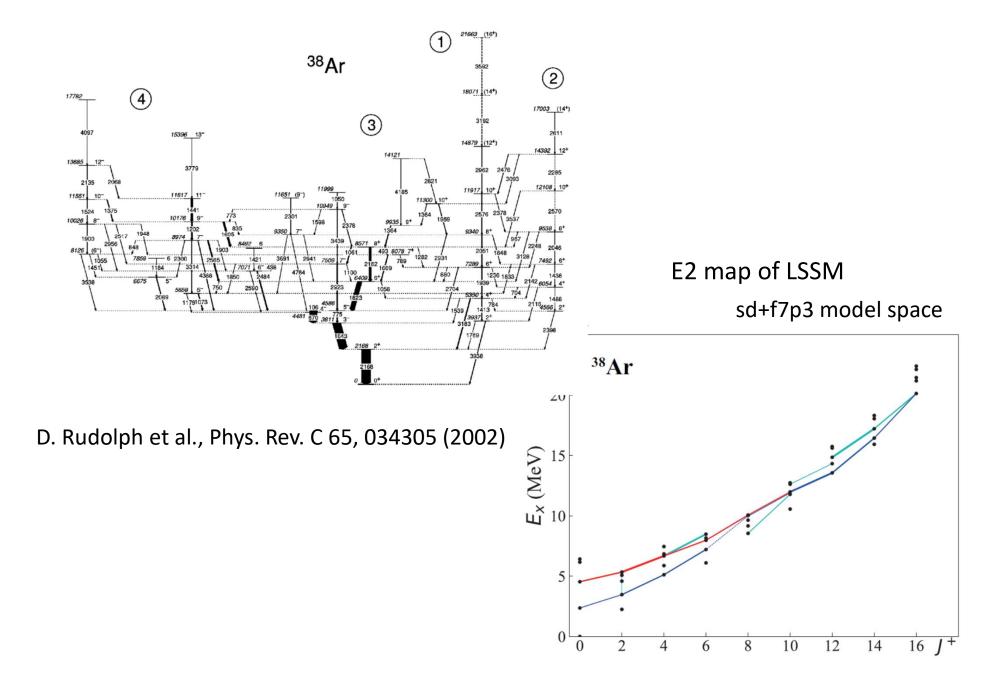


¹³⁵₅₇La₇₈: LSSM calc.

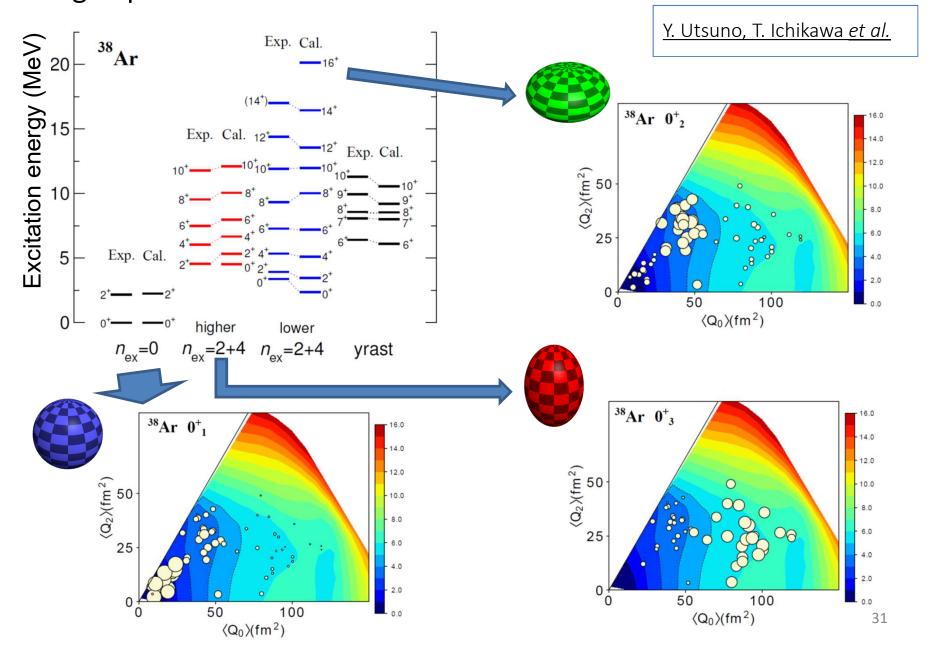
Md. S. R. Lasker et al. Phys. Rev. C 99 014380 (2019).



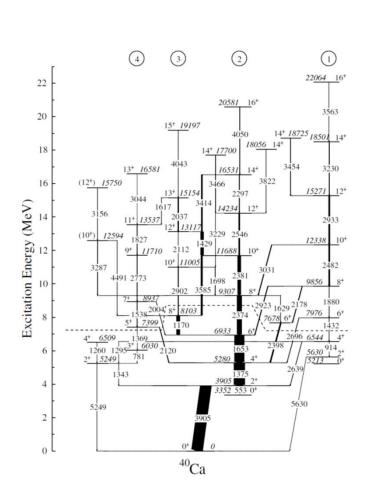
High-spin states in LSSM: deformed bands of nuclei around ⁴⁰Ca



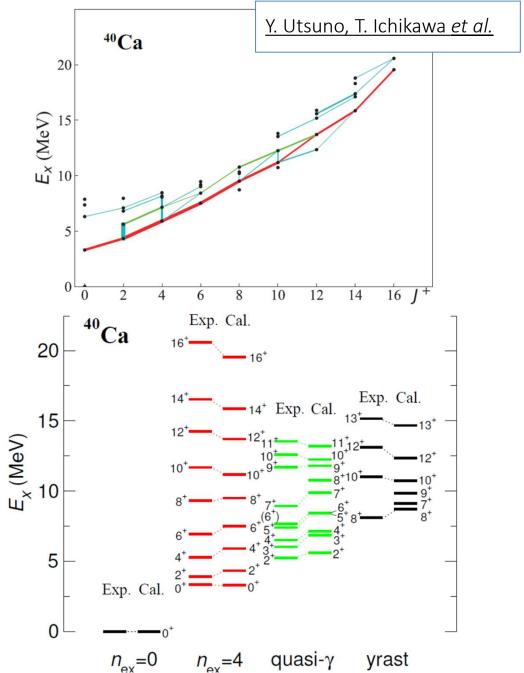
High-spin states in LSSM: deformed bands of nuclei around ⁴⁰Ca



High-spin states in LSSM: deformed bands of nuclei around 40Ca



E. Ideguchi et al., Phys. Rev. Lett. 87, 222501 (2001).



Summary

- Algorithm of the "KSHELL" code: on-the-fly generation of the matrix elements at every matrix-vector product in the Lanczos method.
- Thick-restart block Lanczos method improves the performance.
- Good parallel efficiency for massively parallel computation.
- Feasibility of the LSSM to study high-spin states and deformed bands are demonstrated.

Collaborators

- Takashi Abe (CNS Tokyo)
- Michio Honma (Aizu)
- Takatoshi Ichikawa (CNS Tokyo)
- Takahiro Mizusaki (Senshu)
- Takaharu Otsuka (Tokyo / RIKEN)
- Naofumi Tsunoda (CNS Tokyo)
- Yusuke Tsunoda (CNS Tokyo)
- Yutaka Utsuno (JAEA / CNS Tokyo)
- Sota Yoshida (Tokyo)

and a lot ... Thank you!