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Hamiltonian matrix in the LSSM

44Ti M=0 space in pf-shell (4,000 dim.) 

⇒ Real symmetric sparse matrix

• The Lanczos algorithm is quite 
efficient to obtain low-lying states.

• In the KSHELL code, the matrix 
elements of the many-body 
Hamiltonian is generated on-the-fly 
every matrix-vector product to 
suppress the memory usage.

C.W. Johnson et al., CPC 2013



Truncation of the model space

Ref. M. Horoi et al., Phys. Rev. C78, 014318(2008)

Exp.exactconfiguration is restricted
（truncation）

56Ni ... Z=N=２８
doubly closed with 
N=Z=28 magic, 
truncation of particle-
hole excitation is 
expected to work well

Number of p-h excitation 
from f7/2 is restricted (t)



Truncation by Nħω excitation

ħω

0ħω
no cross shell excitation

2ħω
across 2 shell gaps

and so on ...



Contamination of center-of-mass motion
• In the model space beyond 0ħω, center-of-mass motion is 

contaminated.

• Lawson method
– Lift up spurious center-of-mass excited states by adding CoM Hamiltonian

• Center-of-mass motion can be clearly removed in full Nħω model 
space

• If not full space, separation is approximately achieved by large 
... controversial
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48Ca J=1-, sd-pf-sdg shell, 1ħω truncation



Truncation in KSHELL code



Advanced option: one-body transition density

• Concerning the transition and moments, it would be 
better to replace the H.O. wave function by e.g. 
Woods-Saxon wave function. 

• In this case, the KSHELL code provides one-body 
transition density (OBTD) by “is_obtd=.true.” option.



Pitfall : Phase convention 

For further study, you may want to construct your own 
operator. Pay attention to phase conventions.

• Condon-Shortley vs. Biedenharn-Rose convention  

–

• spin-orbit coupling 
–

• Radial wave function
–
–



Lanczos method

• Suppose large real symmetric sparse matrix 
and obtain some lowest eigenvalues... 

• One of the Krylov-subspace methods

• Ritz value ... eigenvalues of submatrix in 
Krylov subspace



Power method
• Suppose large real symmetric sparse matrix 

and obtain the lowest (largest) eigenvalues... 
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Lanczos method : algorithm
• Prepare initial state (e.g. random) 
• Iterate 

• Solve eigenvalue problem of 
tri-diagonal matrix by bisection method

N.B.                          is satisfied mathematically. However, as k increases, 
this orthogonality relation is often broken by round-off error

0u

k
T
kk Auua 

1111 '/'   k
T
kkk uuuu

1 k
T
kk Auub

11'   kkkkkk ubuaAuu
Gram-Schmidt orthogonalization

Normalize

ijk
T
i uu 1

Reorthonalization

Matrix-vector product, bottle neck!



Convergence of Lanczos method  
56Ni shell-model calc. 109-dimension sparse matrix 

10 lowest eigenvalues    ... 241 iterations

Excitation energies of 56Ni
Ref. M. Horoi et al. Phys. Rev. C73 061305R (2006)

code “KSHELL”
9 sec/iteration @FX10 240 nodes (SPARC 64 IXfx, 3840 cores),  total 35min.

4GB Lanczos vector



Matrix representation

Solve eigenvalue problem of the Hamiltonian matrix 

M=0 M=0 M=0
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jiij ccccvcctH †††

 332211 mumumu

Why is it sparse matrix?

jiij mHmH 

Hamiltonian is two-body (or three-body) interaction: 

e.g. 031 mHm for two-body int.



Configuration : bit representation
M=0 M=0 M=0
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0    1    2    3
4    5    6    7

m 0 1 2 3 4 5 6 7 Decimal num.

|m1> 1 1 0 1 0 0 1 0 75

|m2> 1 0 0 1 0 1 1 0 105

|m3> 0 0 0 0 1 1 1 1 240

 ††††
63101 ccccm



“On-the-fly” operation of matrix-vector product

Number of Hamiltonian matrix element                             is too huge 
to store on memory
Only matrix-vector product is required for Lanczos method

jiij mHmH 

0    1    2    3
4    5    6    7

m 0 1 2 3 4 5 6 7 Decimal num.

|m1> 1 1 0 1 0 0 1 0 75

|m2> 1 0 0 1 0 1 1 0 105

|m3> 0 0 0 0 1 1 1 1 240

0174 cccc ††

101743 mccccm ††

off 1, 0 bits 
and 
on 4, 7 bits

Binary search to find where the obtained number  is.



Further acceleration : 
proton-neutron factorization of wave function

 mmm  np MMM 

np 

Each M-scheme basis state is a product of proton and neutron configurations
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For acceleration of the matrix-vector product of the proton-
neutron interaction （bottle neck）
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pki mcc†In advance, proton one-body interaction and neutron one-body interaction

are operated to accelerate the proton-neutron interaction. )(
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Block Lanczos method 

௜ and ௜ are block matrices 

Subspace extended by a
product of a matrix and 
block vectors

• Block Krylov subspace method



Performance improvement of block algorithm
Elapsed time of a product of the matrix and block vectors

48Cr in pf-shell, 1,963,461 dimension, Xeon 20 cores

Elapsed time for a product of 
the matrix and vectors

Elapsed time for a product per a vector
On-the-fly
generation of 
matrix elements 



48Cr in pf-shell, 1,963,461 dimension
Convergence of the 32nd eigenvalue 
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Performance improvement by the block 
Lanczos method 



Performance of block Lanczos method 
112Sn w/ 100Sn core

6,210,638 dimension
48Cr in pf-shell, 1,963,461 dimension



Further acceleration : 
Thick-restart  block method

N. Shimizu et al., Comp. 
Phys. Comm. in print.

When the number of the Lanczos 
vectors reaches ௠ , the 20 
lowest eigenvectors in the 
subspace is only taken and restart 
the Lanczos iterations.



Massively parallel computation 

K computer 
548,352 CPU cores

Summit @ ORNL
17,579,520 GPU cores

2020 Japan will launch 
“Fugaku” supercomputer 



Parallel computation of matrix-vector product in 
the KSHELL code

E.g.  assume 9 computer nodes 

• Diagonal blocks are equally distributed.
• Communication volume per matrix-vector product is the smallest,   

(V: size of a vector, N: number of nodes）
• A vector is split equally for reorthogonalization



Parallel performance (strong scaling)

56Ni, pf-shell 
109 dimension 

Good parallel 
performance up to 105

threads



Progress in computer : 
M-scheme dimension vs. year

1950 Mayer & Jensen, single-particle SM

Current limit :  ~1011 M-scheme dim.  
⇒ 800 GB / a vector 

Computation cost is almost proportional to the M-scheme dimension 



Odd-mass medium-heavy nuclei 

R. Garg et al., PRC 87, 034317 (2013), R. Leguillion et al., PRC 88, 044309 (2013)

T1/2=28.4(8)ns 
isomer : 
23/2- or 23/2+?
configuration?

g-factor -0.049(3)

Exp. level scheme of 135
57La78



E2 map of 135La

Exp.

LSSM calculations
50-82 model space, 
SNV interaction



135
57La78 : LSSM calc.

LSSM calc. , arrow width : B(E2)
3 x 109 M-scheme dimension 

Md. S. R. Lasker et al. Phys. Rev. C 99 014380 (2019).
Exp.

23/2+ isomer
d5/2 x (h11/2)-2

Magnetic
rotation

πg7/2 x 134Ba g.b.
πd5/2 x
134Ba g.b.

πdh11/2 x 134Ba g.b.

g-factor -0.049(3)
LSSM    -0.052    



High-spin states in LSSM: deformed bands of nuclei around 40Ca

E2 map of LSSM

D. Rudolph et al., Phys. Rev. C 65, 034305 (2002)

sd+f7p3 model space
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High-spin states in LSSM: deformed bands of nuclei around 40Ca



High-spin states in LSSM: deformed bands of nuclei around 40Ca
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Y. Utsuno, T. Ichikawa et al.

E. Ideguchi et al., Phys. Rev. 
Lett. 87, 222501 (2001).



Summary

• Algorithm of the “KSHELL” code: on-the-fly 
generation of the matrix elements at every 
matrix-vector product in the Lanczos method. 

• Thick-restart block Lanczos method improves 
the performance. 

• Good parallel efficiency for massively parallel 
computation. 

• Feasibility of the LSSM to study high-spin 
states and deformed bands are demonstrated.
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