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Re-arrangement reactions

e g+A->b+B or A(a,b)B

* Nuclei are transformed, nucleons are exchanged (b#a, B#A)

e We'll focus on simple processes — “Direct” reactions

 We need to use some of what we learned about elastic scattering.



Direct transfer reactions

b$_. .b_.

A B

Adding nucleon(s) to A:
“x” is transferred from a to A, making B=A+x and
b=a-x

Known as “Stripping”
X can be one or more nucleons



Direct transfer reactions

A B

Removing nucleon(s) from A:
“x” is transferred from A to b, making B=A-x and
b=a+x

Known as “Pickup”
X can be one or more nucleons



Advantages to direct transfer

e It is Selective

* Single-nucleon transfer preferentially populates
simple states with strong “single-particle”
character

e Important for understanding the nature of single-
particle levels, especially interesting now in the era
of “modified shell structure” in exotic nuclei

 Different reactions probe different amplitudes

e |t is “Easy” to understand
e Reaction mechanism is relatively simple — a single-
step transition between two states
e The cross sections tend to be “large”

e 1 to 10s of mb/sr for single particle stripping &
pickup



Momentum Matching:
Larger |,y means larger angle

i O/

angular momentum of the transferred
Kt particle=gR =1, orq=1/R
q This roughly determines the best angle
for transfer:
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Early (d,p) theory and data
from Phys. Rev. 80 (1950)
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Ry is the “Butler radius”
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The shape tells you /| —what about the rest?

I have calculated angular distriblitions resulting from such a
stripping process by equating, at the nuclear surface, the exact
wave function for a particle outside the nucleus to the interior
wave function. After some simplification the resulting boundary
equations can be solved in such a way that unknown properties
of the nuclear wave functions affect the important parts of the
distributions merely as a constant multiplying factor, The re-

(Butler, 1950)

...Known today as the “spectroscopic factor” S.
This contains all the interesting nuclear structure information
What does it mean and How do we get it?



How do we “measure” S ?7?

e Siis not an experimental observable, so you cannot
“measure” it.

* Does that mean S is meaningless, as some might
claim?

* | think no — meaningful values of S can be deduced
from comparisons between measured cross sections
and the predictions of nuclear reaction models.
(Typical is the Distorted Wave Born Approximation or

DWBA).
* But then — S is model dependent, so caveat emptor.

 We can try to deduce absolute or relative values of S.



One-page summary of the DWBA for transfer: (d,p)
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(or “single-particle
overlap” for B=A+x)

Matrix element with nuclear structure
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Interpretation Oof S

e S reflects the overlap between the initial and final
states; do/dQ oc S

e S “measures” orbital vacancies (# of holes) for
stripping, or orbital occupancies (# of particles) for
pickup.

 McFarlane and French (Rev. Mod. Phys. 32, 1960):
e #Holes = XC*S X ZF—J: (adding or “stripping”)

l

» #Particles = XC*S; (removing or “pickup”)
e Sum is over all states that could have a particle in the orbital
of interest

» Connection to resonances: S; = y%/v?., (“Schiffer’s
anzatz”)



Spectroscopic factors from 2°Zr(d,p)°'Zr
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Example: 4B
(Lightest particle-stable n+-B, (3/2))

N=9 nucleus) We are interested in single-neutron sd states
2 97 q (recall first lecture and Talmi and Unna)

I-.-e—s—_2.08—“—(‘2‘:)_1 27, state Is broad (I'~1 MeV)

R -
(37)

.38

S.=0.969 MeV

Most information is from *#C(’Li,’Be)“B
and analogies to the 2B spectrum.

More recent 1“Be 3-decay work suggests
positive-parity levels not shown here

From most recent TUNL A=14
compilation (1991)



Simple picture for 3B(d,p)!“B

0d., 4.78  0dy,
0ds,, 0.
1S/, 0.

138
n

13B(Jr =32

(d,p) populates single-neutron states in 1“B
(schematic picture)



Simple picture for 3B(d,p)!“B

0d, 4.78
0ds), 0.74
1S, 0.0

138
n

13B(Jr =32

(d,p) populates single-neutron states in 1“B
(schematic picture)

0ds),

(1,2,3,4)



Simple picture for 3B(d,p)!“B

0ds), 478  0dy, ® — (0,1,2,3)
0d., 0.
1S/, 0.

138
n

13B(Jr =32

(d,p) populates single-neutron states in 1“B
(schematic picture)



v(sd) states in *B with (d,p) (ignore the 0d,, orbital)

p(27) = ayv(1sy/;) + B,v(0ds/7)

>-
w(25) = —Pov(1sy/2) + a,v(0ds /)
w(17) = ayv(1sy/) + B1v(0ds /)

1-
w(13) = —p1v(1sy)3) + a,v(0ds ;)
w(31) = “3V(0d5/2) 3"
w(47) = a,v(0ds ;) 4-

(d,p) spectroscopic factors give us the &’s and the f’s



14B Excitation-energy spectrum from HELIOS
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_13B(d,p)'“B angular
distributions

Blue: L=0
Red: L=2
Violet: =0+ L=2

2(0.00): S,=.71 S,=.17
1(0.65): 5,=0.96 S,=.06
3-(1.38): S,=1.00 (fixed)
4-(2.08): S,=1.00

OMPs fit 30 MeV d+12C, p+1213C
elastic scattering

Bedoor et al., PRC 88 011304 (2013)




Sum rules with simple, pure states:

All S = 1.0 and (2J,+1=4)

5 3
#holes=1xz+1x1=2(51/2)

Hhol —1><5+1><3+1><7+1><9—6 d
oles =1 X 7 1 1 2 (5/2)

Jo= 2 1 3 4



Sum rules with observed states:

Measured values of S (2J+1=4)

5 3
H#holes =10.71|X% Z + Oi6 Z = 1.6 (51/2)
Hhol —0!7><5+006><3+1><7+1><9—43 d
olLes =| U. 4 . 4 4 4_— g (5/2)

Jo= 2 1 3 4

We're missing two states!



Recovering the unobserved strength

w(27) = ayv(1sy ;) + B,v(0ds/;)
w(25) = —Pv(1sy/2) + a,v(0ds/;) g
w(17) = ayv(1sy/) + [1v(0ds ;)
w(13) = —f1v(1s1/2) + a;v(0ds ;) g

Assume y(27,) and y (1°,) are the orthogonal partners of
w(2,) and v (17,). We already know «,,/3, and «,/3,, SO we can
then guess the spectroscopic factors for /(27,) and y(1,).

Then:
Experimentally, 25(2J+1)/4=5.9 (L=2) and 1.9 (L=0),
Close to the sum-rule values of 6.0 and 2.0.
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Evolution of E(1s, ;) and E(Od; ;) for N=9 with Z:
(Remember Talmi and Unna)
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Conclusions

e Scattering and transfer reactions can tell us a
great deal about nuclear structure.

* We have to combine information from many
different places to gain understanding.

* We must not forget that much of what we
think we “know” we actually don’t — we
surmise in the context of models, so we should
be careful about our claims.

* Next time: techniques.
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