

Theoretical study of the Isovector Monopole Resonance

Xavier Roca-Maza

Single Particle and collective motion from nuclear many-body correlations (PCM2025)

[JNIVERSITAT DE

BARCELONA

University of Aizu, Aizu-Wakamatsu, March 4th - 7th

WARNING:

THE MATERIAL PRESENTED HERE IS PART OF (MY) WORK IN PROGRESS ON THIS TOPIC

⇒Theoretical results obtained with the charge-exchange version of the HFBCS-QRPA code based on Skyrme Energy Density Functional (see arXiv:2102.06562)

⇒One of Skyrmes employed: SAMi = Skyrme Aizu Milano

Motivation

Direct experimental evidence for the IVGMR:

- $\rightarrow (\pi^{\pm}, \pi^{0})$ reaction [Errell 1984-1986, Irom 1986]
- \rightarrow (⁷Li,⁷Be) reaction [Nakayama 1999]

difficulties on the interpretation of the data (background).

Recent efforts \rightarrow (¹⁰C,¹⁰B*) reaction [Sasamoto 2012] \rightarrow (¹⁰Be,¹⁰B*) reaction [Scott 2017]: IVGMR identified (MDA) in ²⁸Al ($\Delta T_z = +1$)

 28 Al \rightarrow strength is fragmented, not easy to identify the resonance.

Heavier nuclei (connection collective mode properties with the nuclear Equation of State) \Rightarrow more intense ¹⁰Be or ¹⁰C beams [1].

Important also for ground-state isospin-mixing $\langle T | T + 1 \rangle \neq 0$ in heavy N=Z nuclei, like ¹⁰⁰Sn [Hamamoto and Sagawa 1993; Colò et al. 1995]

[1] Zegers, R.G.T. (2023). Excitation of Isovector Giant Resonances Through Charge-Exchange Reactions. In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics

Charge-exchange Isovector Monopole (IVM): Excitation operator [IVM as Isobaric Analog State (IAS) "overtone"]

Charge-exchange Isovector Monopole: Sum rules

Non energy weighted sum rule

 $m_{-}(0) - m_{+}(0) = \langle 0 | [\tilde{\mathcal{O}}_{+}, \tilde{\mathcal{O}}_{-}] | 0 \rangle$

 $m_{-}(0)$ is largely reduced by using the new operator: **about 60-70%**; while the $m_{+}(0)$ is only moderately reduced: **about 10-30%** (tested in ⁴⁸Ca, ⁹⁰Zr, ²⁰⁸Pb)

 $= \frac{1}{4\pi} \left(N \langle r_n^4 \rangle - Z \langle r_p^4 \rangle \right) + \frac{N - Z}{4\pi} \langle r_{\text{exc}}^2 \rangle^2 \left(1 - 2 \frac{N \langle r_n^2 \rangle - Z \langle r_p^2 \rangle}{(N - Z) \langle r_{\text{exc}}^2 \rangle} \right)$

with \mathcal{O}_+ : dominated by IAS

Energy weighted sum rule

$1 \mathbf{k}^2$							
$m_{+}(1) + m_{-}(1) = \frac{1}{\pi} \frac{n}{2m} A \langle r^{2} \rangle (1 + \kappa + \eta_{N} + \tilde{\eta})$	E_C) En	hance.	fac.	⁴⁸ Ca	$^{90}\mathrm{Zr}$	²⁰⁸ Pb	
$4 (m) \int dx = \mathbf{S} \mathbf{k} \mathbf{v} \mathbf{r} \mathbf{m} \mathbf{e}$	$\overline{\kappa}$			0.2438	0.2798	0.30071	
$\kappa \equiv \frac{1}{A\langle r^2 \rangle \rho_0} \left(\frac{1}{m_{IV}^*} - 1 \right) d\mathbf{r} r^2 \rho_n \rho_p \qquad \text{ORyTHE}$	η_N	r		0.0035	0.0019	0.0063	
$\eta_N \equiv \frac{1}{2A(r^2)\rho_0} \left(\frac{m}{m_{\star r}^*} - 1\right) \left[d\mathbf{r}r^2 \left(\rho_n - \rho_p\right)^2 \right]$	η_C	,		0.3090	0.4152	2.0825)
$\tilde{\eta}_C \equiv \frac{m}{2\hbar^2 A \langle r^2 \rangle} \int d\mathbf{r} \left(r^2 - \langle r_{\rm exc}^2 \rangle \right)^2 \left(\rho_n - \rho_p \right) U_C$	$ ilde\eta_C$,		0.0866	0.1125	0.58321	J
comes from	ם D.C.	$\frac{1}{4\pi}\sum_{ii}($	$r_i^2 - \langle r_i^2 \rangle$	$\langle r_{\rm exc}^2 \rangle)(r_j^2 -$	$\langle r_{\rm exc}^2 \rangle [t_+$	$(i), [\mathcal{H}, t_{-}(j)]$)]

Non charge-exchange Isovector Monopole: Excitation operator [center-of-mass (CM) important]

Correction $\langle r_{\rm exc}^2 \rangle$ will not produce any effect since it is a constant and $[\mathcal{H}, T_z] = 0$

$$\tilde{\mathcal{O}}_{z} = \sum_{i=1}^{A} \left(r_{i}^{2} - \langle r_{x}^{2} \rangle \right) Y_{00}(\Omega_{i}) t_{z}(i) = \mathcal{O}_{z}$$

But center-of-mass correction will produce an effect

$$\mathcal{O}_{z}^{\text{CM}} = 2\frac{Z}{A} \sum_{i=1}^{N} r_{i}^{2} Y_{00}(\Omega_{i}) - 2\frac{N}{A} \sum_{i=1}^{Z} r_{i}^{2} Y_{00}(\Omega_{i})$$

~ 5% on EWSR;

~ 20% on IEWSR;

Non charge-exchange Isovector Monopole: Transition density $\int d^3r \delta \rho_{\text{IVM}} \mathcal{O}_{\text{IVM}}^{\text{CM}} = \sqrt{4\pi} \int dr r^4 \delta \rho_{\text{IVM}}$

Non charge-exchange Isovector Monopole: Sum rules

Non energy weighted sum rule (not analytic)

$$m_{z}(0) = \langle \mathcal{O}^{\dagger} \mathcal{O} \rangle_{\text{RPA}} \neq \langle \mathcal{O}_{z}^{\dagger} \mathcal{O}_{z} \rangle_{\text{HF}}$$

Energy weighted sum rule (K defined in previous slides)

$$m_z(1) = \frac{4}{\pi} \frac{\hbar^2}{2m} \frac{NZ}{A} \langle r^2 \rangle (1+\kappa)$$

Inverse energy weighted sum rule (dielectric theorem)

$$\frac{1}{m_z(-1)} = 2 \frac{\partial^2 \langle \mathscr{H} \rangle}{\partial \langle \mathcal{O}_z \rangle^2} \bigg|_{\lambda=0} \qquad \langle \mathcal{O}_z^{\rm CM} \rangle = \frac{1}{\sqrt{\pi}} \frac{NZ}{A} \int d\mathbf{r} r^2 \left(\rho_n - \rho_p \right) \propto \frac{NZ}{A} \langle r^2 \rangle^{1/2} \Delta r_{np}$$

Variation of excitation operator due to variation of isovector density $\rho_{IV} \equiv \rho_n - \rho_p \Rightarrow$ polarizability $\alpha_M = 2m_z(-1)$ proportional to the second derivative of the expectation value of the energy density with respect to $\rho_{IV} \Rightarrow$ Symmetry energy Non charge-exchange Isovector Monopole: Polarizability (α_M) and Equation of State ($S(\rho) = J - L \frac{\rho_0 - \rho}{3\rho_0} + \mathcal{O}[\rho^2]$)

Assuming macroscopic Droplet Model [1] or Hydrodynamic model [2] for

guidance:

1,2

$$\alpha_{M} = \frac{A}{4\pi J} \left(\langle r^{4} \rangle - \langle r^{2} \rangle^{2} \right) \left(1 + \frac{7}{3} \frac{L}{J} A^{-1/3} \right)$$
SAMi-J family:

1] J. Meyer, P. Quentin, and B.K. Jennings, "The isovector dipole mode: A simple sum rule approach," Nuclear Physics A **385**, 269–284 (1982). [2] J.D. Bowman, E. Lipparini, and S. Stringari, "Isovector monopole excitation energies," Physics Letters B 197, 497–499 (1987).

Isovector Monopole:

Strength function (exp data from pion charge-exchange [1])

Isovector Monopole:

Excitation energy systematics (model independent?)

Conclusions

The IAS effects must be subtracted from the excitation operator to better isolate the charge-exchange IVM

The **center of mass (CM)** must be **subtracted** from the excitation operator to **better isolate** the **non change-exchange IVM**

The subtraction of the CM is important to access information on the symmetry potential through the study of the monopole polarizability α_M

The **energies** of the three **IVM** modes are **quite different** \Rightarrow competing effects of the **Coulomb** and **symmetry** potentials.

Excitation energies are, to a good extent, model independent (?)