Single-particle and collective motions from nuclear many-body correlation (PCM2025)

Contribution ID: 51 Type: not specified

Structure within the N=40 Island of Inversion

The focus of this work is neutron-rich Fe and Mn isotopes with N~40, which lie within an Island of Inversion approximately centered at $\langle \sup \rangle 64 \langle \sup \rangle Cr$. Here, a quenching of the N=40 sub-shell gap allows multi-particle multi-hole excitations and deformation to develop in the ground-state configurations of nuclei in the region. Limited spectroscopic information has been collected so far in the region of N~40 below $\langle \sup \rangle 68 \langle \sup \rangle Ni$. For the even-even nuclei, the $2\langle \sup \rangle + \langle \sup \rangle < \sup \rangle 1 \langle \sup \rangle$ and $4\langle \sup \rangle + \langle \sup \rangle < \sup \rangle 1 \langle \sup \rangle$ state energy systematics has been explored and, for the Fe and Cr isotopes, of B(E2; $2\langle \sup \rangle + \langle \sup \rangle < \sup \rangle 1 \langle \sup \rangle - \langle \sup \rangle + \langle \sup \rangle > 1 \langle$

Proton knockout reactions on the neutron-rich N=38 and N=40 isotopes ^{64,66}Fe and ^{63,65}Mn have been performed to investigate the proton spectroscopic factors of the parent nuclei. We will discuss the results of this measurement as well as a complementary secondary fragmentation measurement, and interpret in comparison with both LSSM and Nilsson model calculations.

Type of contribution

Are you a student or postdoc?

nc

Primary author: CRAWFORD, Heather (Lawrence Berkeley National Laboratory)

Co-author: Dr PORZIO, Carlotta (CERN)

Presenter: CRAWFORD, Heather (Lawrence Berkeley National Laboratory)