
Single-particle and collective motions from nuclear many-body correlation (PCM2025)

Contribution ID: 42

Type: not specified

Double beta decay phase space factor calculation using Coulomb potential determined by density functional theory

Wednesday, 5 March 2025 15:21 (1 minute)

In some nuclei, a phenomenon called double beta decay, in which two nucleons simultaneously undergo beta decay, is known to occur rarely. In this case, two neutrinos are emitted. Neutrinos may be Majorana particles, which do not distinguish between particles and antiparticles among Fermi particles. In that case, double beta decay without neutrino emission $(0\nu\beta\beta)$ may occur. If the half-life of this decay can be measured experimentally and quantities called the phase space factor and the nuclear matrix element can be calculated theoretically, the effective neutrino mass can be obtained.

The phase space factors include the information on the emitted electron wave functions. They have been calculated by solving the Dirac equation for the emitted electrons by including the finite-size effect (the nuclear charge distribution assuming a uniform charge distribution or derived from Woods-Saxon potential) and the electron screening effect based on the Thomas-Fermi equation [1,2].

We are performing a precise calculation of the phase space factor based on the nuclear and atomic density functional theory (DFT); nuclear charge distribution based on the nuclear DFT and the electron screening effect based on the atomic DFT.

In this presentation, I will show the results of the phase space factor calculation for double-beta decaying nuclei based on the nuclear/atomic DFT.

[1] J. Kotila and F. Iachello, Phys. Rev. C 85, 034316 (2012).

[2] S. Stoica and M. Mirea, Front. Phys. 7, 12 (2019).

Type of contribution

Are you a student or postdoc?

yes

Primary author: KANAI, Atsuya (University of Tsukuba)
Co-author: HINOHARA, Nobuo (University of Tsukuba)
Presenter: KANAI, Atsuya (University of Tsukuba)
Session Classification: Poster session