Fragmentation functions for EIC

EICで展開する新たな原子核・素粒子物理 Tokyo University, May 28-30, 2024 Ralf Seidl (RIKEN)

Tools at an EIC and basic requirements

Inclusive Reactions in ep/eA:

- Physics: Structure Fcts.: g₁, F₂, F
- Very good electron id \rightarrow identify scattered lepton
- Momentum/energy and angular resolution of e' critical
- scattered lepton \rightarrow kinematics of event (x,Q²)

Semi-inclusive Reactions in ep/eA:

- Physics: TMDs, Helicity PDFs, $FF \rightarrow$ flavor separation, dihadron-corr.,...
 - \rightarrow Pion, Kaon asymmetries, cross sections
- Excellent particle ID: π[±],K[±],p[±] separation over a wide range in −3<η<3
 → excellent p resolution at forward rapidities
- TMDs: full Φ -coverage around γ^* , wide p_t coverage
- Excellent vertex resolution \rightarrow Charm, Bottom separation

Exclusive Reactions in ep/eA:

- Physics: DVCS, excl. VM/PS prod. \rightarrow GPDs, parton imaging in $b_{T;} g(x,Q^2,b_T)$
- Exclusivity \rightarrow large rapidity coverage \rightarrow rapidity gap events
 - \searrow reconstruction of all particles in event
- high resolution, wide coverage in t \rightarrow b_t \rightarrow Roman pots

scattered lepton

e (k₁₁)

P (**p**₁)

 $\gamma^* (\mathbf{q}_{\mu})$

incoming lepton

virtual photo

Gluon and sea polarization

- 1 year of EIC running will pin down gluon polarization
- Using SIDIS: precise determination of sea quark helicities, especially strange contribution of interest
- Indirect determination of orbital angular momentum via sum rule
- Also interesting access to flavor via charged current reactions

EIC TMD Goals: 3D Transverse spin and momentum

structure

Deliverables	Observables	What we learn	Stage I	Stage II
Sivers &	SIDIS with	Quantum	3D Imaging of	3D Imaging of
unpolarized	Transverse	Interference $\&$	quarks	quarks & gluon;
TMD quarks	polarization;	Spin-Orbital	valence+sea	$Q^2 (P_{hT})$ range
and gluon	di-hadron (di-jet)	correlations		QCD dynamics
Chiral-odd	SIDIS with	3 rd basic quark	valence+sea	$Q^2 (P_{hT})$ range
functions:	Transverse	PDF; novel	quarks	for detailed
Transversity;	polarization	hadronization		QCD dynamics
Boer-Mulders		effects		

Tables from original EIC white paper

Current data for Sivers asymmetry:

• COMPASS $h^{\pm}: P_{hT} < 1.6 \text{ GeV}, z > 0.1$ • HERMES $\pi^{0.4}, K^{\pm}: P_{hT} < 1 \text{ GeV}, 0.2 < z < 0.7$ • JLab Hali-A $\pi^{\pm}: P_{kT} < 0.45 \text{ GeV}, 0.4 < z < 0.6$

10

10

Q² (GeV²)

Planned:

JLab 12

10-4

10 -2

10 -3

5/30/2024

Ralf Seidl: Fragmentation for EIC

10⁻¹

Help of Fragmentation Functions (FF) for nucleon (spin, transverse) structure

- Correlate a hadron in the final state with the struck parton:
 - Parton flavor (HF, favored vs disfavored, strange fragmentation, etc; ie: u quark into a π^+ is favored, d quark disfavored, s, ubar quarks favored in K⁺ fragmentation)
 - Spin of the struck quark (Collins and Interference Fragmentation, other polarized FFs)
 - Transverse momentum of struck parton (though convolution with fragmentation transverse momentum)
- Closely related to confinement mechanism

Access to Fragmentation functions

• SIDIS: $\sigma^{h}(x, z, Q^{2}, P_{h\perp}) \propto \sum e_{q}^{2}q(x, p_{t}, Q^{2})D_{1,q}^{h}(z, k_{t}, Q^{2})$

- Relies on unpol PDFs
- Parton momentum known at LO
- Flavor structure directly accessible
- Transverse momenta convoluted between FF and PDF

• pp:

$$\sigma^{h}(P_{T}) \propto \int_{x_{1},x_{2},z} \sum_{a,a' \in q,g} f_{a}(x_{1}) \otimes f_{a'}(x_{2}) \otimes \sigma_{aa'} \otimes D^{h}_{1,q}(z)$$

- Relies on unpol PDFs
- leading access to gluon FF
- Parton momenta not directly known

• e⁺e⁻:

$$D^{h}(z,Q^{2},k_{t}) \propto \sum_{q} e_{q}^{2} \left(D_{1,q}^{h}(z,k_{t},Q^{2}) + D_{1,\overline{q}}^{h}(z,k_{t},Q^{2}) \right)$$

- No PDFs necessary
- Clean initial state, parton momentum known at LO
- Flavor structure not directly accessible*

RIKEN

Ralf Seidl: Fragmentation for EIC

Single hadron FF					
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity			
Single hadron cross sections: $e^+e^- \rightarrow hX$ $D^h_{1,q}(z,Q^2)$ <u>PRL111 (2013) 062002</u> <u>PRD101(2020) 092004</u>	Azimuthal asymmetries: $e^+e^- \rightarrow (h)(h)X$, $\cos(\phi_1 + \phi_2)$ $H_{1,q}^{\perp(1)h}(z,Q^2)$ PRL 96 (2006) 232002 PRD 78 (2008) 032011	Unpol SIDIS, pp: $\frac{d\sigma}{dz}$ $e^+e^- \rightarrow (h)(h)X$ PRD92 (2015) 092007 PRD101(2020) 092004 and scale dependence			
Transverse momentum dependent FFs: $e^+e^- \rightarrow (h)X$ $D^h_{1,q}(z, k_T, Q^2)$ PRD 99 (2019) 112006	Transverse momentum dependent asymmetries $e^+e^- \rightarrow (h)(h)X,$ $\cos(\phi_1 + \phi_2), Q_t$ $H_{1,q}^{\perp h}(z, k_T, Q^2)$ PRD100 (2019) 92008	Polarizing Λ fragmentation PRL 122 (2019), 042001 $D_{1,q}^{\perp h}(z,k_T,Q^2)$			
	Dihadron FF (IFF)				
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity			
Dihadron cross sections $e^+e^- \rightarrow (hh)X$ $D^{h_1h_2}_{1,q}(z,m,Q^2)$	Azimuthal asymmetries: $e^+e^- \rightarrow (hh)(hh)X,$ $\cos(\phi_1 + \phi_2),$ $H_{1,q}^{h_1,h_2,\triangleleft}(z,Q^2,M_h)$	Unpol SIDIS, pp: $\frac{d^2\sigma}{dzdm}$			
5/ PRD96 (2017) 032005	Ralf Seidl: Fragmentation for EIC PRL107 (2011) 072004	8			

Single hadron measurements					
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity			
Single hadron cross sections: $e^+e^- \rightarrow hX$ $D^h_{1,q}(z,Q^2)$	Azimuthal asymmetries: $e^+e^- \rightarrow (h)(h)X,$ $\cos(\phi_1 + \phi_2)$ $H_{1,q}^{\perp(1)h}(z,Q^2)$	Unpol SIDIS, pp: $\frac{d\sigma}{dz}$ $e^+e^- \rightarrow (h)(h)X$			
PRD 88 (2013) 032011 (Babar)	PRD 92 (2015) 111101 (Babar K) PRL 116 (2016) 042001 (BESIII)	and scale dependence			
Transverse momentum dependent FFs: $e^+e^- \rightarrow (h)X$ $D^h_{1,q}(z, k_T, Q^2)$	Transverse momentum dependent asymmetries $e^+e^- \rightarrow (h)(h)X,$ $\cos(\phi_1 + \phi_2), Q_t$ $H_{1,q}^{\perp h}(z, k_T, Q^2)$ PRD 90 (2014) 052003 (Babar)	BABAR BESTI			
Dihadron measurements					
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity			
Dihadron cross sections $e^+e^- \rightarrow (hh)X$ $D_{1,a}^{h_1h_2}(z,m,Q^2)$	Azimuthal asymmetries: $e^+e^- \rightarrow (hh)(hh)X,$ $\cos(\phi_1 + \phi_2),$ $H_{1,h_2}^{h_1,h_2,\triangleleft}(z, Q^2, M_h)$	Unpol SIDIS, pp: $\frac{d^2\sigma}{dzdm}$			
5/30/2024	Ralf Seidl: Fragmentation for EIC	9			

Pion fragmentation

DSS15: deFlorian et.al., Phys.Rev. D91 (2015) 014035

- Light quarks symmetric
- Dominated by favored fragmentation especially at high z
- Gluon substantial but falling off faster than quarks

Kaon fragmentation

- Strange quarks are dominating kaon fragmentation
- Also dominated by favored u quark fragmentation at high-z
- At lower z penalty for producing ss pair in fragmentation (u+u < s+s)
- Charm fragmentation comparable (what about weak decays?)

SIKEM

Unpolarized single hadrons

PRD 101 (2020) 092004

- Update with better ISR correction
- Correlated and uncorrelated uncertainties separated → improve global unpolarized FF fits 5/30/2024 Ralf Seidl: Fragmentation for EIC 12

K_T Dependence of FFs in e+e-

- Gain also sensitivity into transverse momentum generated in fragmentation
- Two ways to obtain transverse momentum dependence
 - Traditional 2-hadron FF

Juse transverse momentum between two hadrons (in opposite hemispheres)

 \rightarrow Usual convolution of two transverse momenta

- Single-hadron FF wrt to Thrust or jet axis
 - →No convolution

 \rightarrow Need correction for $q\bar{q}$ axis (similar to a Jet function)

Transverse momentum dependent cross sections for pions, kaons and protons

SIKEN

Gaussian widths comparison to MC

first direct (no convolutions) measurement of z dependence of Gaussian widths

Collins fragmentation function

Ф

 $\overline{p}_{h\perp}$

J. Collins, Nucl. Phys. B396, (1993) 161

 \overline{S}

 $D_{q\uparrow}^{h}(z, P_{h\perp}) = D_{1,q}^{h}(z, P_{h\perp}^{2}) + H_{1,q}^{\perp h}(z, P_{h\perp}^{2}) \frac{(\hat{\mathbf{k}} \times \mathbf{P}_{h\perp}) \cdot \mathbf{S}_{q}}{zM_{h}}$

 h, \bar{p}_h

 Spin of quark correlates with hadron transverse momentum

translates into azimuthal anisotropy of final state hadrons

Needed at the EIC to access Transversity and Boer-Mulders (quark spin-orbit) function

16

5/30/2024

Belle Collins asymmetries

- Red points : $cos(\phi_1 + \phi_2)$ moment of Unlike sign pion pairs over like sign pion pair ratio : A^{UL}
- Green points : $cos(\phi_1 + \phi_2)$ moment of Unlike sign pion pairs over any charged pion pair ratio : A^{UC}
- Collins fragmentation is large effect
- Consistent with SIDIS indication of sign change between favored and disfavored Collins FF

RS et al (Belle), PRL96: 232002 PRD 78:032011, Erratum D86:039905

Transverse momentum

- Add transverse momentum to Collins asymmetries' z dependence
- Currently only 1 or 2-dimensional extractions available (q_t, z₁x z₂, p_{t1}x p_{t2}, z₁xp_{t1})
- Increasing asymmetries with both z and pt, but pt reach limited
- Multidimensional extractions needed

18

SIKEN

Quark transversity via Collins: Kaons

BABAR: PRD 92 (2015) 111101

Anselmino et al: PRD 93 (2016) 034025

0.5 0.9/0.2 0.3 0.5

0.2

0.3

0.9

- Addition of kaon Collins fragmentation strongly needed for flavor decomposition of quark transversity
- Large amount of potentially participating FFs well described by light and "heavy" favored and disfavored FFs
- Allows inclusion of HERMES and COMPASS kaon asymmetries (+eventually EIC) in fits
- Also: pion Collins at lower scale(BESIII) consistent with TMD evolution

19

alf Seidl: Fragmentation for EIC

5/30/2024

Di-hadron fragmentation functions

 $D_{1,q}^{h_1h_2}(z,m,Q^2)$

and transverse spin dependent interference fragmentation function

20

0

 \bigcirc

P_{h1}

P_{h2}

e+

Di-hadron FF mass dependence (same hemisphere)

Belle: RS et.al. PRD96 (2017) 032005

- Important input for IFF based transversity global analysis
 - Individual resonances, etc quite visible; interesting for FF in itself (\rightarrow soon)

5/30/2024

Ralf Seidl: Fragmentation for EIC

Global fits of Dihadron FFs

JAMDiFF (w/ LQCD)

JAMDiFF (no LQCD)

Single Λ polarization measurements

- Related to open question about Λ polarization in hadron collisions from 40 years ago!
- Fragmentation counterpart to the Sivers Function:
 - unpolarized parton fragments into transversely polarized baryon with transverse momentum wrt to parton direction
- Reconstruct Λ , its transverse momentum and polarization

YingHui Guan (Indiana/KEK): PRL 122 (2019), 042001

Transverse momentum dependence

- Different behavior for low and high-z :
- At low z small
- At intermediate z falling Polarization with P_t
- At high z increasing polarization with P_t

Opposite hemisphere pion correlation

- Interesting z_{π} and z_{Λ} dependence :
- At low z_{Λ} light quark fragmentation dominant, some charm in $\pi^{-} \rightarrow$ different signs
- At high z_Λ strange + charm fragmentation more relevant
 → same signs
- Several fits to data with slightly different results

Ongoing: Decaying particle FFs

- Study the explicit differential cross sections for VMs, D mesons as a function of x_p
- Mostly mass distributions and fits well-behaved, except for $\rho-\omega$ (interference) and more exotic resonances
- Also of interest for ultra highenergetic cosmic ray air shower research (muon problem)

 Example from MC at Belle energies (for 4π acceptance):

SIKEM

Summary

- Fragmentation functions are crucial to access the goals of the EIC in semi-inclusive DIS:
 - Unpolarized FFs are needed for unpolarized (n)PDFs and (anti)quark spin contributions
 - Polarized FFs are needed for Transversity and tensor charge
 - Transverse momentum dependent FFs for

- Many relevant FF measurements obtained from B factories, more to come
- At the EIC the spin structure and the 3 Dimensional momentum structure of the nucleon will be accessed and greatly improved compared to the current knowledge

