

EICで展開する新たな原子核・素粒子物理学 @東京大 2024年5月29日 後藤 雄二(理研)

RHIC (Relativistic Heavy Ion Collider)

3+金、偏極陽子+金/アルミ

RHICの物理

- 高エネルギーQCD(量
 子色力学)
 - クォークとグルーオンの 物理
 - 物質の成り立ち
- •重イオン衝突
 - クォーク・グルーオン・ プラズマの物理
 - Hot QCD
- 偏極陽子衝突
 - 核子構造の物理
 - Cold QCD
 - RHICスピン物理 → EIC の物理へ

理研BNL協力

- RHICスピン計画 1997~
- RHICでの偏極陽子加速
 - 「シベリアの蛇」磁石、偏極度計
- PHENIX実験
 - ミューオン南アーム、ミューオントリガー、EMCal-RICHト リガー、ローカル偏極時計、VTXシリコン検出器
 - sPHENIXシリコン飛跡検出器
- 理研BNL研究センター

「シベリアの蛇」磁石第1号機 磁石中のビーム粒子の軌道

クォーク・グルーオン構造

レプトン(電子)の深非弾
 性散乱(inclusive DIS)

- 高いQ²(Q² = -q²)が陽子内 部のパートン(クォークと グルーオン)に対する分解 能を与える
- クォーク、グルーオンの パートン分布関数 (PDF)
 - 一次元描像
 - *横軸 x*: クォーク、グルー オンの進行方向の運動量比
 - EICで偏極PDFの精度を格 段に上げる

10-3

10

10

10-

10

RHICでの陽子のスピン構造の研究

- スピンパズルの謎を解く
 - 陽子=クォーク(uud)+グルーオ ン
 - ・陽子のスピン1/2の起源は何か?
 - クォークのスピン (1/2)
 - グルーオンのスピン(1)
 - クォークとグルーオンの軌道角運動量
 - クォークのスピンが陽子のスピンを 担う割合は 20% - 30%
- 縦スピン(ビーム軸方向) 非対称
 度の測定
 - ・ グルーオン偏極測定
 - Wボソンによる反クォーク偏極測定
- 横スピン非対称度の測定
 - 前方の大きな横スピン非対称度の研究から軌道運動の理解へ

• 偏極イオン源からの偏極度の維持、モニターを行う

Polarized proton collision experiments

- A_{LL} (double-helicity asymmetry)の測定
 - ・ 衝突軸方向に偏極 $A_{LL} = \frac{d\sigma_{++} d\sigma_{+-}}{d\sigma_{++} + d\sigma_{+-}}$

- グルーオン偏極
 - gluon+gluon および gluon+quark 反応に対して A_{LL} を測定
 Midrapidity jet at STAR
 Midrapidity π⁰ at PHENIX

グルーオン偏極(Ag)

• 正のグルーオン偏極 arXiv:1503.03518 DSSV、NNPDFによるグ ^{0.8} x∆g ローバルQCD解析 $^{0.6}$ Q²=10 GeV² • 衝突エネルギー200 GeV の 0.4 RHIC偏極陽子衝突データを 含む 0.2 2014年プレス発表 グルーオン+グルーオンと -0.2 グルーオン+クォーク反応 からの大きな収量 -0.4 DSSV14 -0.6 NNPDFpol1.1 and the second s positivity bound -0.8 10⁻³ 10-2 10-1 STAR実験のジェット測定 Х 大きなアクセプタンス $Q^2 = 10 \text{ GeV}^2 \int_{0.05}^{0.2} dx \Delta g(x, Q^2)$ • PHENIX実験π⁰測定 NNPDFpol1.1 $+0.15 \pm 0.06$ アクセプタンスは限られる $0.10^{+0.06}$ が高性能のEMカロリメータ DSSV14

STARのJetとDi-Jet A_{LL}測定

- 中央ラピディティーでの包括的 (inclusive) ジェットと2ジェット
- Phys. Rev. D 105 (2022) 092011
 √s = 510 GeV
- Phys. Rev. D 103 (2021) L091103
 - $\sqrt{s} = 200 \text{ GeV}$

PHENIXの直接光子ALL測定

- ・直接光子が負の非対称度(グルーオンのス ピンの向きが陽子のスピンの向きと反対: <u>Ag < 0</u>)を持つ理論が正しい確率は0.3% 以下
- グルーオン・スピンの向きが陽子スピンと 同じ向き ($\Delta g > 0$) であることを決定的 に支持

衝突エネルギー200GeV(出版無し)

衝突エネルギー510 GeV Phys. Rev. Lett. 130 (2023) 251901

反クォーク偏極

•Wボソン生成に対するパリティーの破れたA_Lの測定

・偏極陽子に対して後方に生成されたWボソンは反クォーク偏極への感度を持つ

反クォーク偏極

- 2013年までに√s = 510GeV 衝突で十分なデータを 取得し、Wボソンデータの解析を行った
 - STAR中央検出器 $W \rightarrow ev$
 - PHENIX中央検出器
 - PHENIX前方検出器 $W \rightarrow \mu v$
- グローバルQCD解析により $\Delta \overline{u} > \Delta \overline{d}$ が示唆される • 非偏極では $\overline{d} > \overline{u}$

横偏極陽子+陽子衝突

- 核子内部のクォーク、グルーオンの軌道運動の研
- PHENIX実験
 - π中間子、η中間子、J/ψ、荷電ハドロン、ミューオン・ 電子(重フレーバー)、直接光子
- 直接光子
 - Phys.Rev.Lett. 127 (2021) 162001
 - 始状態グルーオンのダイナミクスに敏感
 - 陽子内部のグルーオン運動の測定に成功
 - 3グルーオン相関関数に制限を与える

横偏極現象の解明

- PHENIX open heavy flavor at midrapidity
 - Phys Rev. D 107 (2023) 052012
 - グルーオン融合過程:始状態の グルーオンに感度
 - e[±] 非対称度測定:レプトン崩壊 チャンネル
 - 3グルーオン相関関数(trigluon correlation function)に 制限を与える

- RHICスピンプログラムの完了
 - PHENIX実験のデータ収集が2016年に完了
 - ・縦偏極陽子衝突からの物理はほぼ完了
 - 横偏極陽子衝突からの物理はまだ残っている
- sPHENIXの物理
 - ジェット相関とジェット 構造
 - パートンのエネルギー損失
 - ウプシロン分光
 - Cold QCDとスピン物理

Not shown: sEPD and MBD

sPHENIX & STAR (2023-25)

sPHENIX BUP 2022 [sPH-TRG-2022-001] 24 (28) cryo week scenarios

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.	
		[GeV]	Weeks	Weeks	$ z < 10 { m cm}$	z < 10 cm	
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ⁻¹	$4.5 (6.9) \mathrm{nb}^{-1}$	
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹	
					4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]		
2024	p^{\uparrow} +Au	200	_	5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ {\rm pb}^{-1}$	
					0.01 pb ⁻¹ [10%- <i>str</i>]		
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb^{-1}	

sPHENIX実験

 Open heavy flavor 重いフレーバー生成 グルーオン融合過程: 始状 能のグルーオンに感度 proton <u>beam</u> • 3グルーオン相関関数(tri- \rightarrow or \leftarrow 1000000 gluon correlation gluon function)に制限を与える heavy flavor e[±] 非対称度測定:レプト ン崩壊チャンネル \rightarrow or \leftarrow • D中間子非対称度測定 proton beam $0.08 \vdash p^+p \rightarrow e^{+/-} + X$ Å Open Heavy Flavor e⁺ 0.03 √s = 200 GeV **SPHENIX** BUP 2022, $p^{\uparrow}+p \rightarrow D^0/\overline{D}^0+X$, P=0.57 Open Heavy Flavor e 0.06 $|\eta| < 0.35$ 6.2 pb⁻¹ str. *p*+*p*, Years 1-3 PRD78, 114013 PHENIX 0.04 0.02 Kang, PRD**78**, $\lambda_f = \lambda_d = 0$ 0.02 V $(\lambda_{\rm f}, \lambda_{\rm d}) = (-0.01 \pm 0.03,$ 0.11±0.09) GeV 0.01 Kang, PRD**78**, $\lambda_f = -\lambda_d = 70 \text{ MeV}$ 0 PRD84, 014026 0 -0.02 $K_{G} = (6.0^{+14}_{.17}) \times 10^{-4}$ $K_{G}' = (2.5^{+2.2}_{.2.2}) \times 10^{-4}$ -0.04-0.01 3.4% polarization scale uncertainty not included -0.06 1 2 3 8 -0.026 p_ [GeV/c] 4.5 0.52.5 3 3.5 n 4 *p*_{_} [GeV]

まとめ

- 偏極陽子衝突実験
- ・縦スピン(ビーム軸方向)非対称度の測定
 - グルーオン偏極測定
 - Wボソンによる反クォーク偏極測定
- 横スピン非対称度の測定
 - 前方の大きな横スピン非対称度の研究から軌道運動の理解へ
- RHICスピンプログラムの完了
 - PHENIX実験のデータ収集が2016年に完了
 - ・縦偏極陽子衝突からの物理はほぼ完了
 - 横偏極陽子衝突からの物理はまだ残っている
- sPHENIX実験
 - 核子内部のクォークとグルーオンの軌道運動の研究