研究会「EICで展開する新たな原子核・素粒子物理」

28–30 May 2024 University of Tokyo Asia/Tokyo timezone

初めに EICおよびePIC実験の現状

TAKU GUNJICENTER FOR NUCLEAR STUDYTHE UNIVERSITY OF TOKYO

2020年に行われたKEK研究会<u>「素粒子・原子核コライダー物理の交点」</u>を受けて、今回 は、米国の次期大型計画EIC(Electron-Ion Collier)に焦点を置き、EICが今後の素粒 子物理学と原子核物理学にどのような新しい展開をもたらすかを議論したいと思います。

EICはアメリカ原子核物理の最優先計画であり、ブルックヘブン国立研究所に建設される 世界初の偏極電子+偏極陽子及び原子核衝突型加速器です。EIC計画は現在アメリカエネ ルギー省から計画実行段階への権限を与えられ、次の施設建設段階へ、そして2032年頃 の建設完了に向けて、順調に進んでいます。

EICは今後10年程度で実現する新たなコライダーとしては唯一のものとなる可能性もあり、 原子核物理分野と素粒子物理分野が協力して推進することを目指したいと思います。

What is EIC?

Electron-Ion Collider (EIC): A new particle accelerator that collides electrons with protons and nuclei to produce snapshots of those particles' internal structure unlock the secrets of the strongest force in Nature

Uniqueness of EIC Science

- 3D tomography of proton, deuteron and ³He (light nuclei)
 - How do the nucleon properties emerge from quarks, gluons, and their interactions?

4

Probing q-g structure of NN and NNN interaction in light nuclei

Uniqueness of EIC Science

- Evolution of partonic structure from nucleons to nuclei
 - How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?
 - How do the quark-gluon interactions create nuclear binding?
 - Properties of gluon saturation at high-energy

<u>Hierarchical structure of matter</u>

Nucleus (MeV)

Hadron Constituent quarks (GeV)

Quarks and Gluons (TeV)

Collaborative creation examples

Collaborative creation examples

Quarks and Gluons (TeV)

Develop collaborative creation

	基調講演:The Electron-Ion Collider: the ultimate electron microscope		Prof. Gordon Baym		
10:00					
	Koshiba-hall, University of Tokyo		09:45 - 10:35		
	coffee break				
	Koshiba-hall, University of Tokyo		10:35 - 10:55		
11:00	RHICALYNBER		Yuji Goto		
	Koshiba-hall, University of Tokyo		10:EE 11:20		
	ePIC Experiment Overview	techn	alogies		
	Koshiba-hall, University of Tokyo		ologics		
	Lunch				
12:00					
13:00	Koshiba-hall, University of Tokyo		11:45 - 13:15		
	Studies of exotic-hadron candidates in high-energy reaction	15	Shunzo Kumano		
	Koshiba-hall, University of Tokyo				
	Study of internal structure of baryons using hadron beam				
14:00	Koshiba-hall, University of Tokyo		10.40 - 14.00		
14.00	Searching for Lepton Flavor Violation at EIC		Kaori Fuyuto		
	Koshiba-hall, University of Tokyo		14:05 - 14:35		
	Workshop photo // coffee break				
	Koshiba-hall, University of Tokyo 14:35 - 14:55				
15:00	Recent trend of timing silicon detectors and development plan for future colliders Koji Nakamura				
	Koshiba-hall, University of Tokyo		14:55 15:20		
	MAPS (TBD) Koshiba-hall, University of Tokyo	technolo	Dgies ^{Imura}		
	Streaming readout DAQ development and standardization b	y SPADI Alliance	Prof. Shinsuke OTA		
16:00	Koshiba-hall, University of Tokyo		15:45 - 16:10		
	coffee break				
	Koshiba-hall, University of Tokyo		16:10 - 16:30		
17:00	基調講演: Status of Collinear PDFs and the impact of the E Koshiba-hall, University of Tokyo		Enrico Tassi 		
	Measurement of Hadron Mass in nuclei		Megumi Naruki		
	Koshiba-hall, University of Tokyo	marc	17:20 - 17:45		
	ハドロンの重力形状因子と質量分解	1022	Kazuhiro Tanaka		
18.00	Koshiba-hall, University of Tokyo		17:45 - 18:10		

09:00	The color entanglement in TMD-factorization breaking (TBD) Koshiba-hall, University of Tokyo	entang	lemer	1
	EIC Physics from Lattice QCD: The Nucleon Mass and Spin Decor Koshiba-hall, University of Tokyo		Raza Sufian 09:25 - 09:50	
10:00	格子QCDの量子計算に向けて Koshiba-hall, University of Tokyo coffee break		Arata Yamamoto 09:50 - 10:15	
	Koshiba-hall, University of Tokyo Introduction to TMD and higher twist frameworks and their expec Koshiba-hall, University of Tokyo		10:15 - 10:35 Shinsuke Yoshida 10:35 - 11:00	
11:00	Fragmentation functions for nucleon structure measurements Koshiba-hall, University of Tokyo		Ralf Seidl 11:00 - 11:25	
12:00	Koshiba-hall, University of Tokyo	QGP	11:25 - 11:50	
<u>e</u>	Koshiba-hall, University of Tokyo		11:50 - 13:00	
U	cluster and SRC を習む原子核物理の最近のトビック (TBD) Koshiba-hall, University of Tokyo	Nuclea	r clust	er
14:00	hadron spectroscopy from Belle to EIC Koshiba-hall, University of Tokyo Hadron structure studies with antiproton beam at J-PA	adron str	ucture	>
	Kashiba-hall, University of Tokyo coffee break Kashiba-hall, University of Tokyo		14:05 - 14:30	
15:00	kaon-nucleus bound systems Koshiba-hall, University of Tokyo	Hadron	cluste	r
	cseaQuest要題・COMPASS要題で何か分かったのか?~陽子のプレ Koshiba-hall, University of Tokyo Measurements of Generalized Parton Distribution fut	in, GPD	Yoshiyuki Miyachi 15:15 - 15:40 Natsuki Tomida	
16:00	Koshiba-hall, University of Tokyo coffee break Koshiba-hall, University of Tokyo		15:40 - 16:05 16:05 - 16:25	
	iji ja		10.05 17.05	
17:00	Kosnipa-hall, University of Tokyo		16:25 - 17:05 Yuji Goto	

Develop collaborative more!

New insights in non-equilibrium quantum physics and its universality from quarks to the universe and life science

Develop collaborative more!

New insights in non-equilibrium quantum physics and its universality from quarks to the universe and life science

Technologies

CMOS sensor ($\sigma \sim 1\mu m$) (TPSCo, $10\mu m$])

65nm process, wafer-sized sensor

AC-LGAD Si sensor (σ~20ps) (Hamamatsu)

Low Gain Avalanche Detector (LGAD)

AI implemented Streaming heterogeneous Computing

<u>Goal of this workshop</u>

- 13
- EIC will delve deep into the building blocks of our visible Universe and revolutionize our understanding of the nucleon, nuclei and the strong interaction.
 EIC will be the place to develop the technology frontiers.
- EIC will be the project for entire nuclear physics community and particle physics community.
 - What are the synergies between EIC and other facilities (RIBF, J-PARC, LHC)?
- How we can benefit from EIC and can develop nuclear physics and particle physics using EIC? Which kinds of new academic/science domains we can make?
- How we can establish the collaboration across the different facilities?

EIC Users Group

https://www.eicug.org/

- Currently, 291 institutions from 40 countries participate in the EIC User Group.
- The EIC scientific community is rapidly growing with more than 1,454 members.
- Japanese participation : 15 institutes

ePIC experiment

ePIC-Japan strategy

Superconducting **Dual-radiator** Forward Electromagnetic Solenoid Calorimeter RICH Barrel Electromagnetic Tracking Detectors Calorimeter \sim Backward Electromagnetic Time-of-Flight Calorimeter Data-Acquisition Backward Hadronic Electronics Calorimeter Electron-Ion Collider E.C. Aschenauer 20 EIC RRB Meeting, December 7th & 8th, 2023

Central Detector Non-DOE Interest & In-Kind

Far-Forward/Far-Backward Detectors Non-DOE Interest & In-Kind

B0-Tracker & Electromagnetic Calorimeter

Electron-Ion Collider EIC RRB Meeting, December 7th & 8th, 2023

E.C. Aschenauer

21

①Time-of-Flight based on AC-LGAD system (30 ps) **②Zero Degree Calorimeter : ALICE FoCAL technology ③DAQ** : AI implemented Streaming DAQ/Computing (④ MAPS: for ePIC Upgrae)

Signal processing and data acquisition infrastructure alliance

Major Posts in ePIC

Executive Board

Paul Newman <paul.newman@cern.ch ≥>

DEI Member: Megan Connors <meganconnors@gmail.com ≥>

Early-Career Member: Fernando Flor <fernando.flor@vale.edu@>

Coordinators: Markus Diefenthaler<mdiefent@jlab.org ≥, Salvatore Fazio <salvatore.fazio@unical.it@>, Rosi Reed <rosijreed@gmail.com@>

FAR FORWARD DSL: Alex Jentsch (BNL) DSTC (B0): Zvi Citron (Ben-Gurion) DSTC (Roman Pots/OMD): Alex Jentsch (BNL) Co-DSTC (ZDC): Yuji Goto (RIKEN) Co-DSTC (ZDC): Miguel Arratia (UCF

AC-LGAD TOF

16

DSL: Zhangbu Xu (Kent State) Dep. DSL: Satoshi Yano (Hiroshima) DSTC's: Mathieu Benoit (ORNL), Matthew Gignac (Santa Cruz)

Timeline

- 2026 CD-3 Start of Construction
- 2033 CD-4 Start of Operations (Early Finish)
- 2035 CD-4 Start of Operations

Recent news

融合エネルギーを生む仕組

18

朝日新聞(5/21,火曜日)

今和1年5月15日(水) 疑表 1 面			
パーク 1 1 26年着日 た 26年着日 た 26年着日 た 26年着日 た 2010 た 2	ないます。 ないと、これまで蓄積 ない」とを提進する加速器が通知で、日本ないの強烈計画に参加 一日本が、総額物のののの建設計画に参加 たった加速器が高に、「総合科学 の具体的な建設計画に参加 が、総額物のののの建設計画になった。 加速器がには現金 たったが、総額物のののの建設計画になった。 加速器がには現金 たったが、総額物のののの建設計画になった。 加速器がには現金 たったが、総額物のののの建設計画になった。 加速器が高に、 たったが、総額物のののの建設計画になった。 加速器が高に、 たったが、総額物ののののの建設計画になった。 たったが、総額物ののののの建設す。 が、金属の片、「総合科学 の具体的な建設計画になった。 たったが、総額物ののののの建設すが必要 たったが、総額物ののののの建設すが必要 たったが、総額物のののののの建設すが必要 たったが、総額物のののののの建設すが必要 たったが、総額物のののののの建設すが必要 たったが、総額物のののののの理要を推進する。 したに理解した。 たったが、総額物のののののの建設すが必要 たったが、総定のの意味。 たったが、総額物のののののの理要を推進する。 したに思惑がある。 の加速器を運動で、 たったが、総額物ののののののの の加速器を運動ので、 たったが、 ない」と危機感を強めてい、 が、 たったが、 につたける。 ない」とた。 につたける。 ない」とた。 につたける。 ない」とた。 につたける。 ない」とた。 につたける。 ない」とた。 につたける。 ない」とた。 に、 たったが、 に、 たったが、 たる。 国際、 した、 たったが、 たる。 に、 たったが、 たる。 に、 たったが、 たる。 に、 たったが、 たる。 に、 たったが、 たる。 に、 たったが、 たる。 し、 た。 た。 た。 た。 た。 た。 た。 た。 た。 た。		
1 ご支能飛かに の舞にをし様子れ核 ///// る算まか費当う本 5 億 通参日をは係設年 る技み 。要ずなは検は約点 E し 如の要うにけか理。術の	化ど研用 復画 6 元し 中し、%で担に安し、 根た日 力きで相くてそ 主い米のる最乗はきの	文部科学省 MINISTRY OF LOUCATION. CULTURE, SPORTS. SCIENCE AND TECHNOLOGY JAPAN	
求、来見なるととしての解 に来見な係器が40億パの方式でのないのです。 数であるな係器な子のがです。 数でないないのです。 するため、日本ののです。 ので、日本のでのです。 本でにしている。 の解 ので、 の解 の解 の解 の解 の解 の解 の解 の解 の の解 の の	二 。連強 。新りなた成 、 勝化低鋭すい。異	会見・報道・お知らせ 政策・審議会 白書・編	
解円当たもちのの図2数 を聴く日子を一所 に進 祝る。550のの日2数 表で科本ネ年研げに進 記を予文値と開測)7は 明、省側ルの究1 質み	· · · · · · · · · · · · · · · · · · ·	トップ > 政策・審議会 > 審議会情報 > 科学技術・学術審議会 > 基礎研究振興部会 > 基礎研究振興部会(第14回)の開催(について	
271 町算科円、発定で0推 す計はに半協拠9 献へ 面上の省程開をに、0定 る画、協1力点9 で先 >す概は度発担使日億17 見に15力省関を7 き端	彩 文部科学省 Минизтег оf евисатом. Силтите, зратя: Бсимес аков тесновобог јадам	⊙基礎研究振興部会(第14回)の開催について	
■ 加速器 物質を構成する陽子	会見・報道・お知らせ 政策・審議会 白書・統計・出版物		
■ や電子などの粒子を電気の力 で加速する装置。高速の粒子同士	トップ > 政策・審議会 > 審議会情報 > 調査研究協力者会議等(研究振興) > EIC計画及びこれに関連する原子核物理学の新たな展開に関する有識者会議	1. 日時	
を衝突させることで、物質の起源 解明や宇宙誕生初期の高エネル ギー状態を再現する実験などに活 田できろ、勝た物の只都改良や文	● EIC計画及びこれに関連する原子核物理学の新たな展開に関する有識者会議	令和6年5月16日(木曜日)16時00分~18時00分	
化財の年代測定などにも使われて いる。		2. 場所	
	開催状況	オンライン開催	
	第1回【開催日時:令和6年5月15日(水曜日)16時00分~18時00分】		
	□ 開催案内 □ 配付資料	3. 議題	

開催状況一覧を見る

1. EIC計画及びこれに関連する原子核物理学の新たな展開に関する有識者会議の設置について 2. AIの研究開発力強化の方向性について

補足資料

EIC Science I

SPIN is one of the fundamental properties of matter. Spin cannot be explained by a static picture of the proton It is the interplay between the intrinsic properties and interactions of quarks and gluons

The EIC will unravel the different contribution from the quarks, gluons and orbital angular momentum.

Does the mass of visible matter emerge from quark-gluon interactions?

Atom: Binding/Mass = 0.00000001 Nucleus: Binding/Mass = 0.01 Proton: Binding/Mass = 100

The EIC will determine an important term contributing to the proton mass, the socalled "QCD trace anomaly

How are the quarks and gluon distributed in space and momentum inside the nucleon & nuclei? How do the nucleon properties emerge from them and their interactions?

What is the relation to confinement? How do the confined hadronic states emerge from these quarks and gluons?

Is the structure of a free and bound nucleon the same? How the short range correlations or nucleon-clusters are derived from quark and gluon

How do the quarkgluon interactions create nuclear binding? How do quarks and gluons, interact with a nuclear medium?

20

How many gluons can fit in a proton? How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions? Attended bappens for the (11) gluon density in nuclei?

gluon density in nuclei? Does it saturate at high energy?

EIC Science III

Quantum Fluctuation in proton/nucleus What is the nature of proton/nucleus at smallest time scales (which we never saw)?

High-x PDF

Accelerator Performance

Polarized electron and hadron (p, He-3) beams:

- access the spatial and momentum structure of the nucleon in 3d
- access to spin structure of nucleons and nuclei
- probing q-g structure of NN and NNN interaction in light nuclei

Nuclear beams: d to Pb

- > quark and gluon interact with a nuclear medium

High luminosity 10^{33} - 10^{34} cm⁻²s⁻¹:

mapping the spatial and momentum structure of nucleons and nuclei in 3d

Large acceptance (0.2 – 1.3 GeV) through forward focusing IR magnets

> spatial imaging of nucleons and nuclei

Experimental Equipment Scope

- Asymmetric beam energies
 - requires an asymmetric detector with electron and hadron endcap \rightarrow 9.5 meter
 - tracking, particle identification, EM and hadronic calorimetry functionality in all directions, covering equal rapidity area: (-4 < h < 4)

- Imaging science program with protons and nuclei
 - requires specialized detectors integrated in the IR over 80 m
- Momentum resolution for EIC science
 - requires a large bore (\emptyset 2.4 m) 2T magnet

25 Subsystems incl. high-precision Polarimetry

- Highest scientific flexibility
 - requires Streaming Readout electronics model

- Time.of.Fligh MPGD trackers local hadron **†**, polarimeter MAPS tracker **Solenoidal Maanet** DIRC. RICH e/m detectors **calorimeters** Luminosity offlow Q² Roman **Zero-Degree** Monitor Momentum Pots electron-Calorimeter taggers tagger p/A beam p: 41 GeV, 100 to 275 GeV e: 5 GeV to 18 GeV e beam lepton and hadron polarimeters not shown
- Highly Polarized Beams: 70%

Big data and streaming computing

25

EIC x AI implemented Streaming DAQ/Computing

- Society 5.0: fusion of physics space and cyber-space
- Accelerate computing technologies and develop quantum computing
- Provide new innovative framework for scientific researches in many fields

