LHCでのグルーオン飽和探索、 QGPの物理との関連性 (Gluon saturation at LHC and QGP to physics)

EIC workshop, May 28, 2024, University of Tokyo, Japan

Tatsuya Chujo

1) Introduction:

Physics of Quark-Gluon Plasma (QGP)

High Energy Nucleus-Nucleus Collisions

CERN (Switzerland) LHC (2009-), 27 km = 2.76, 5.02 TeV Pb-Pb /S_{NN}

- Creation of QGP in the laboratory
- Properties of QGP, Restoration of Chiral Symmetry, Origin of nucleon mass

QCD phase diagram 4

Quark Gluon Plasma (QGP)

Neutron Star Merger

Interior of Neutron Star

Baryon density

* Neutron star image: https://phys.org/news/2018-09-neutron-star-jets-theory.html

Crossover Phase Transition

Chiral SB

Normal Nucleus

Lattice QCD prediction

HotQCD Collaboration, PRD 90 (2014) 094503, arXiv:1407.6387 [hep-lat]

Ideal Stephan-Boltzmann Eq.

- ε: energy density
- T: temperature
- g: degrees of freedom
 - (3: hadrons, 37: u, d quarks & gluon (spin, color, flavor))

To produce QGP, we need:

*T*_{pc} ~ 160 MeV

 $\sim 1 \, \text{GeV/fm}^3$ 3

Manifestation of dof for quarks and gluons

Creation of QGP at RHIC and LHC

High Energy Heavy Ion Experiments : Quark Gluon Plasma (QGP), a state of early universe = properties of QGP

Accelerators: RHIC and LHC

After 2025, RHIC \rightarrow EIC (physics data taking will start in 2032), After 2035 ALICE3 @ LHC

25 years of QGP research; (1) Bulk properties

$\varepsilon \sim 16 \ {\rm GeV/fm^3}$ Volume, duration time

Thermostatistical mechanics for quarks and gluons

Hadron production~Bose, Fermi dis.

$$\begin{bmatrix}
n_i = \frac{g}{2\pi^2} \int_0^\infty \frac{p^2 dp}{e^{(E_i(p) - \mu_i)/T} \pm 1}, & E_i = \sqrt{p^2 + m_i^2}
\end{bmatrix}$$

Baryon chemical potential $\mu_B \sim 0$ Chemical freeze-out temp. T_{ch} ~ 160 MeV

> Phys. Rev. C69, 034909 (2004), PHENIX Nucl. Phys. A 757 (2005) 184

1

25 years of QGP research; (2) strongly coupled QGP ⁸ 2. Thermal photons I. Jet Quenching 20-40% ALICE Tinit. ~300 MeV Pb-Pb 0-10% √s_{NN} – 5.02 TeV Success of hydrodynamic models, 1.2 pp $\sqrt{s} = 5.02 \text{ TeV}$ $|\eta_{iat}| < 0.3 \ p_{\tau}^{\text{lead,ch}} > 7 \ \text{GeV}/c$ ALICE 0 10% SCE1 strongly coupled QGP (sQGP) Hybrid Model, Lres = 0 Correlated uncertainty

Phys. Rev. C 101, 034911 (2020), ALICE

3. Large azimuthal anisotropy of particle emission (v₂)

2 3 p_r (GeV/c)

Phys. Rev. Lett.98, 162301 (2007), PHENIX

4. Quark recombination

Collectivity of QGP

Large v₂ at RHIC and LHC

To produce large v₂, it needs two conditions in Hydro cal.

- Early thermalization \sim 0.6 fm/c
- Very small η/s
- Because at early stage of collisions:
 - Reaction zone is elliptic
 - \rightarrow Different pressure gradient between short and long axis
 - \rightarrow Elliptic flow (v₂) generation
- 2) Hydrodynamic equation works for QGP at a very early time
- (~0.6 fm/c) and also needs a small η/s (= strong coupling)

"strongly" coupled QGP (sQGP) with early thermalization

[Turning point] High multiplicity events in small systems (2010)

STAR, PRC 80 (2009) 064912

CMS, JHEP 1009 (2010) 91

Still not well understood those phenomena

 \rightarrow because of the missing steps in QGP formation \rightarrow Early dynamics, nonlinear, non-equilibrium physics!

- \rightarrow v₂ in pp, p-Pb !
 - 2. Strangeness production is scaled by particle multiplicity (pp \rightarrow p-Pb \rightarrow Pb-Pb)

Observed "Ridge" structure

New questions

- Small droplet of QGP?
- Information of initial stages?
- Multi-parton interaction (MPI)?

2) What is nonlinear, non-equilibrium processes in QGP formation?

Non-equilibrium and nonlinear phenomena in high-energy HIC

5. Kinetic freeze-out

- Chemical freeze-out 4.
- 3. QGP (local thermal equilibrium)
- 2. Glasma
 - **Collision!**

Initial condition (CGC) 1.

arXiv:1804.06469v1, Jonah E. Bernhard

Non-equilibrium and nonlinear phenomena in high-energy HIC

Two unexplored steps

(1) Color Glass Condensate (CGC)

- nonlinear QCD evolution (gluons)
- Initial condition of QGP formation
- Undiscovered, properties are not known
- Directory connected to gluon density

(2) Glasma

- <u>non-equilibrated state</u>
- a state between CGC and QGP
- Very short time (0.4 0.6 fm/c), from CGC to QGP

 \rightarrow Rapid thermalization problem

"Very Forward Rapidity Region"

 \rightarrow Access to CGC and Glasma for the first time!

- 5. Kinetic freeze-out

- Chemical freeze-out 4.
- QGP (local thermal 3. equilibrium)

rapid thermalization: ~0.6 fm/c

2. Glasma Nonequilibrated state for q/g

Collision!

Initial condition (CGC)

Nonlinear QCD evolution

arXiv:1804.06469v1, Jonah E. Bernhard

14

3) What is the Color Glass Condensate (CGC)?

Internal structure of proton and high energy limit

Mechanism of multipole gluon creations

- Lifetime of parton's fluctuations: $p \rightarrow Larger$, Lifetime $\rightarrow Longer$
- Probability of fluctuation generation: $x \rightarrow$ smaller, Prob. \rightarrow Larger

→ At high energy, increased small fluctuations exponentially !

Color Glass Condensate (CGC)

proton

nucleus

Large x mid-rapidity Low energy scattering

 $x \approx \frac{2p_T}{\sqrt{s}} \exp^{-\eta}$

gluon splitting

 $\propto N_g$

CGC!

e.g.) Logistic Eq. $\frac{d}{dt}N(t) = \kappa \left((N(t) - N(t)^2) \right)$

 \Rightarrow Balitsky-Kovchegov (BK) e.q.

Small x

forward rapidity High energy scattering

Color Glass Condensate (CGC)

Large x mid-rapidity Low energy scattering

$$x \approx \frac{2p_T}{\sqrt{s}} \exp^{-\eta}$$

CGC!

gluon splitting

 $\propto N_g$

 $gg \rightarrow g$

gluon merge (non-linear effect) $\propto N_g^2$

e.g.) Logistic Eq. $\frac{d}{dt}N(t) = \kappa \left((N(t) - N(t)^2) \right)$

Small x forward rapidity High energy scattering

ln x

Where we can see CGC?

- Small x and low Q region (but $Q >> \Lambda_{QCD}$)
- Universal picture of internal structure of high energy hadron (universality)
- Log-Log plot !
 - \rightarrow Essential to explore a wide x-Q² space
- Non-linear QCD evolution
- Find CGC signal \rightarrow Gluon density

How we probe gluon density (dipole formalism)

e+A DIS & p+A forward observables: same theoretical Framework "Color **Dipole (Quadrupole) Formalism**"

 \rightarrow NLO cal. is possible

→Comparison e+A DIS with forward p+A : Universality of QCD can be tested

<u>e+A DIS</u>

Observables : int. cross section, Structure func. (F₂, F_L)

$$\boldsymbol{\sigma}_{\gamma^*T} = \int_0^1 \mathrm{d}z \int \mathrm{d}^2 \mathbf{r}_\perp |\boldsymbol{\psi}^{\gamma^* \to q\bar{q}}(z, \mathbf{r}_\perp)|^2 \boldsymbol{\sigma}_{\mathrm{dipole}}(x)$$
$$\boldsymbol{\sigma}_{\mathrm{dipole}}^{\mathrm{LO}}(x, \mathbf{r}_\perp) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{r}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{c}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{dipole}}(x, \mathbf{c}_\perp)) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm{dipole}}(x, \mathbf{c}_\perp) = 2 \int \mathrm{d}^2 \mathbf{b} \quad \mathcal{T}_{\mathrm$$

Forward p+A

Observables: Inclusive π^0 , jet, direct γ , γ -jet, di-jet

$$|M|_{\mathrm{LO}}^2 \propto \int \mathrm{d}^2 \mathbf{b} \, \mathrm{d}^2 \mathbf{r}_{\perp} e^{i\mathbf{p}_{\perp}\cdot\mathbf{r}_{\perp}} T_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_{\perp}}{2}, \mathbf{b})$$

20

- Study of saturation requires to study evolution of observables over large range in x at low Q^2
- Forward LHC (+RHIC) and EIC are complementary: together they provide a huge lever arm in x
- EIC: Precision control of kinematics + polarization
- Forward LHC: **Significantly lower x**
 - Observables: isolated y, jets, open charm, DY, W/Z, hadrons, UPC
- Observables in DIS and forward LHC are fundamentally connected via same underlying dipole operator
- Multi-messenger program to test QCD universality: does saturation provide a coherent description of all observables, and is therefore a universal description of the high gluon density regime?

Key points to understand CGC and QCD

Need a clear CGC signal

- Hadron measurement \rightarrow Uncertainty by fragmentation
- Need a clean probe (e.g) q + g -> γ + q
- Need to see non-linear evolution of QCD
 - Explore wide rage of x-Q² space
- Theoretically calculable and compare with data (CGC weakly coupled physics) \rightarrow color dipole
- High precision measurements (statistic, systematic)

ln x

4) Importance of CGC and Glasma to understand QGP formation

Physics of Glasma: How to create QGP

5) Go forward! "FoCal, EIC and CGC"

Forward LHC (FoCal)

- **- Fo**rward **Cal**orimeter
- LHC ALICE, $\sqrt{s_{NN}} = 8.8$ TeV, pp, pA
- Non-linear QCD evolution, <u>Color</u> glass condensate, initial stages of Quark Gluon Plasma (QGP)
- Physics in LHC Run 4 (2029-2032)
- TDR approved by LHCC on **March 2024**

FoCal (Lol) : <u>CERN-LHCC-2020-009</u>

* T. Chujo (FoCal co-project leader, E-pad rep.)

FoCal-H

Hadronic Calorimeter

z = 7 m

FoCal-E (pad, pixel)

Electromagnetic Calorimeter

Collision Point (IP2)

Main Observables:

- π^{0} (and other neutral mesons)
- Isolated (direct) photons
- Jets (and di-jets)
- Correlations
- J/Ψ , UPC

 $3.4 < \eta < 5.8$ $\eta = -\ln(\tan(\theta/2))$

EIC eA

- Brookhaven National Lab. (BNL, USA)
- Will start operation in 2032
- High luminosity polarized e, p / Ion collider at \sqrt{s} = 28-140 GeV
- Luminosity: x100 ~ 1000 higher higher than HERA
- 1st detector: ePIC collaboration

Physics at Electron-Ion Collider (EIC)

- Origin of nucleon mass and spin
- 3D structure of the nucleon and nucleus
- Gluon saturation (Color Glass Condensate)
- Hadronization

Energy loss in QGP

$$R_{AA} = \frac{\text{Hot Dense QGP in Pb} - \text{Pb}}{\text{Vacumme in pp}}$$

- Significant suppression of jet in AA
- Large energy loss is possible by QGP only
- Extract stopping power from model comparison

If CGC exists...

$$R_{pA} = \frac{\text{Yields in } p - Pb}{\text{Yields in } pp}$$

← Slowly increased compared to p-p due to saturation

← Increased faster

RpA decreases

+ $\Delta \phi$ broadened

Saturation signal in FoCal (1)

Mäntysaari, Phys. Rev. D97 (2018) 054023

- Excellent probe: isolated photons from quark-gluon Compton scattering

Saturation signal in FoCal (2)

Stasto, Wei, Xiao, and Yuan, Phys. Lett. B784 (2018) 301

Dilute-dense LO + Sudakov probes quadrupole operator

- Experimental challenge to see an effect of CGC in $\Delta \phi$ width?
- Theory: NLO cal. is needed

Forward γ +jet

Forward di-jet

di-jet: multiple TMD distributions

- γ +jet, balanced di-jet at low-x: $k_T \sim Q_{sat}$ (sensitive to saturation)

- changing $k_{T}(p_{T}) \rightarrow$ exploring non-linear QCD evolution in wide kinematic coverage of *x*-Q² by FoCal

Saturation signal @ EIC eA

- · di-hadron correlation (e-A vs. ep), broadening of width
- \cdot Quasi-elastic coherent J/ ψ production (eliminate de-excitation photons ~300 MeV)

\rightarrow **ZDC** is essential !

shifted t-distribution by CGC

Depletion of di-hadron in e+A as compared to e+p (Domingues et al '11; Zheng et al '14).

Detector design

E-Pixel

20 layers of W(3.5 mm \approx 1X₀) + silicon sensors:

- Pixel: position resolution to resolve overlapping showers
 - CMOS MAPS technology (ALPIDE)

Conventional metal-scintillator design Cu capillary-tubes enclosing BCF scintillating fibers

FoCal Japan

Responsibilities: (1) FoCal-E pad, (2) readout and trigger

- Univ. of Tsukuba
- Tsukuba Univ. of Tech
- Hiroshima Univ.
- Nara Women's Univ.
- Saga Univ.
- Nagasaki Inst. of App. **Sciences**
- Kumamoto Univ.
- Univ. of Tokyo CNS

<u>9 institute, ~25 members</u>

DANGER HIGH VOLTAGE FoCal-Japan: built FoCal-Ep prototypes and tested

Uniqueness of FoCal detector

PS/SPS test beam in 2022

- 1) High two photon separation power (<~5mm, energy resolution ~3%)
- 2) Wide energy dynamic rage (from 1 MIP to TeV EM showers)
- 3) High radiation tolerance (10¹³ (1MeV neutrons) / cm²)

→FoCal-E pad: mainly developed by FoCal-Japan group

Isolated photon ID

30 40 50

60

80

x (mm)

20

10

ALI-PERF-529586

FoCal-E pad performance

MIP responce

Longitudinal shower profiles

FoCal-E pad performance

Linearity

Results show expected behavior

Energy resolution

EIC-ZDC design

Table 2: Physics requirement for ZDC

ePIC ZDC prototype test @ ELPH (2024.03)

LYSO crystal with SiPM readout

Hit map of LYSO crystal calorimeter from online monitoring

41

Summary

- Strong synergies between EIC and LHC forward
- To understand QCD and find a clear signal of CGC, exploring a wide kinematic coverage in x-Q² is crucial
- Universality test of QCD (color dipole formalism) at both EIC and forward LHC
- FoCal: Common detector technologies at forward LHC and EIC (ZDC)
- We will start FoCal production in Japan from 2024, and do physics from 2029-2032 (LHC Run-4) and maybe beyond in ALICE3)

ALICE

In Q^2

Forward pA at high energies

ln ×

DIS (EIC) eA

