HERAでの PDF 測定 つまりこれまでわかっていること: collinear PDFs, diffractive PDFs

Yuji Yamazaki (Kobe University) EICで展開する新たな原子核, 素粒子物理 28 May 2024, Koshiba Hall, Univ of Tokyo

M1のみなさん向けから始めます

- Learning about the basics of DIS and parton densities of hadrons
	- Principle, kinematics, parton density
- Constraining gluon density through jet production
- DIS kinematics and detector requirement
- Diffractive scattering (時間があれば)

小さい構造を見るには 波長の短い波が必要

 \leqslant 0.01 m Crystal 1/10,000,000 10^{-9} m **Molecule Euglena** (optical microscope) $1/10$ 10^{-10} m Virus Atom (electron microscope)1/10,000 10^{-14} m **Atomic nucleus** $1/10$ 10^{-15} m Proton

原子核の発見と 散乱実験の始まり

α 線を原子核に当て, 核分布から標的の大きさを求める

Rutherford experiment (1911) replica

The SLAC experiment and discovery of quarks

- \cdot eN scattering has excess over elastic scattering in large angle, showing the same behavior as Mott scattering i.e. point-like particle
	- A nucleon consists of overlay of quarks

SLAC-MIT 1967 > 8 GeV electron beam

HERA: the only electron-proton collider (so far)

- Circumference: 6.3 km (similar size to the Tevatron at Fermilab)
- Proton beam: 920 GeV
- Electron/positron beam: 27.5 GeV
- \rightarrow centre-of-mass energy \sqrt{s} = 318 GeV Resolve structure down to 10[−]¹⁸ m
- 220 bunch operation (96ns bunch spacing)
- Operated in 1992-2007

Deep Inelastic Scattering

- Quarks are confined
	- A quark approaching the lower energy ($\Lambda_{OCD} \simeq 200$ the strong coupling constant $\alpha_{\mathcal{S}}$ larger
	- $-$ The knocked-out quark will be observed as bound state.
- The quark state snapshot may be taken with photon with short wavelength
	- i.e. high-energy lepton-hadron collision

DIS process and kinematics

DIS variables:

 $s = k \cdot p$: CM energy squared

 $q = k - k'$: virtual photon 4-momentum $Q^2 = -q^2 = -(k - k')^2$

: negative of the virtual photon 4-momentum squared, indicating the mass of the virtual photon

$$
x=\frac{Q^2}{2p\cdot q}
$$

: related to the longitudinal momentum fraction of the quark

coupled (p_a) to the virtual photon (ξ in the left figure)

 $y =$ $p \cdot q$ $p\!\cdot\! k$: related to the scattering angle & mom transfer They satisfy $sxy=Q^2$ at high energy: massless limit

The variable

- $x = Q^2/2p \cdot q$ is defined only by beam parameters and variables determined from the scattered lepton
	- no need to measure hadronic final state in principle
- It is equal to $\xi = p_a/p$
	- Assuming that all initial & final particle masses are ignored
		- the centre-of-mass energy of the initial quark and

virtual photon $\hat{s} = 2k \cdot p_q = 2\xi k \cdot q = \xi s = \xi \frac{Q^2}{xy}$ xy (1)

- Assuming $m_q^2 = p_q^2 = p_q'^2 = 0$, $p_{q}^{\prime 2} = (p_{q} + q)^{2}$ $= q^2 + 2p_q \cdot q = -2xp \cdot q + 2\xi p \cdot q$ $= 2p \cdot q(\xi - x) = 0$ (2)
- This leads to: $x = \xi$ (from (2)) and $\hat{s} = \frac{Q^2}{\sigma}$ \mathcal{Y} $= xs$ (from (1))

The variable

 $y = 1$: backscattering i.e. total momentum transfer to the hadronic system

e(*k*) *e*(*k'*)

The structure function $\bm{F_2}(\bm{x},\bm{Q^2})$

• Electron-quark scattering cross section in leading order perturbation theory:

$$
\frac{d\hat{\sigma}}{d\hat{t}} = \frac{1}{16\pi\hat{s}} \cdot 2e_q^2 e^4 \cdot \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}
$$

- e_a : fraction to the unit charge
- Substituting, it gives: $\frac{d\hat{\sigma}}{d\Omega}$ dQ^2 = $2\pi\alpha^2 e_q^2$ Q^4 $1 + (1 - y)^2$
- defining a point-like quark structure function (SF) as: $\hat{F}_2(x) = xe_q^2 \delta(x \xi)$
	- $-$ The SF of a quark, integrating over δ function: $\frac{d^2\sigma}{d\Omega^2}$ $\frac{d^2\sigma}{dQ^2} = \int \frac{4\pi a^2}{Q^4}$ Q^4 $1 + (1 - y)^2$ $\frac{1}{2}e_q^2\delta(x-\xi) d\xi$ or: $\frac{d^2\widehat{\sigma}}{dx^2}$ $dx dQ^2$ $=\frac{4\pi\alpha^2}{\alpha^4}$ Q^4 $1 + (1 - y)^2 \cdot \frac{1}{2}$ $\frac{1}{2}e_q^2 \delta(x-\xi) = \frac{4\pi a^2}{xQ^4}$ xQ^4 $1 - y + \frac{y^2}{2}$ 2 \widehat{F}_2 Number density of quarks
- Now the contribution from all the quarks to sum up
	- Defining: $F_2(x) = \sum_{q,\bar{q}} \int_0^1 d\xi q(\xi) x e_q^2 \delta(x \xi) = \sum_{q,\bar{q}} \frac{e_q^2 x q(x)}{q(x)}$
	- $-$ The cross section is given as: $\frac{d^2\sigma}{dudx^2}$ $dx dQ^2$ $=\frac{4\pi\alpha^2}{\omega\alpha^4}$ xQ^4 $1 - y + \frac{y^2}{2}$ $\frac{\gamma^2}{2}$ $\left(F_2(x, Q^2)\right)$

changes with Q^2 : see next 11 In principle, the point-like quark cross section does not depend on Q^2 apart from common kinematic factor But the number of quark

 $q(p_q = \xi p)$

u

t

p(*p*)

s

e(*k*) *e*(*k'*)

q

e 2

 $e_q^2 e^2$

q(*p^q*

')

DIS measurements at HERA and extraction of Parton Density Functions (PDFs)

DIS, and proton structure before HERA

Increasing resolution (large Q^2)

early fixed target exp'ts $Q \sim 1$ -3 GeV (10⁻¹ fm)

momentum

fraction x

- The wavelength gets shorter with larger Q^2
	- Uncovering more microscopic structure
	- Start to see "sea quarks":
		- a pair of $q\bar{q}$ from vacuum-polarised gluon

 $2 \frac{1}{2}$

 Q^2 \approx

2

 \mathcal{X}^2

recent fixed target + muon

Q ~ 1-10 GeV (10⁻² fm)

momentum

fraction x

HERA result

- HERA: higher energy scattering
	- $-$ low- x partons are enough energetic to cause
		- $e q$ scattering to be observed in the detector
- Rapid increase in F_2 i.e. quark density observed

HERA result (collider 27.5×920 GeV)

15

Extracting gluons

- The behavior of $F_2(x, Q^2)$ can be explained by the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) differential equation
	- The gluon PDF (parton distribution function) can be extracted by fitting the diff.eq.
	- $-$ Qualitatively: the slope in F_2 with Q^2 is given by the ratio of gluon and quark compoments: more gluons, steeper Q^2 dependence

 $\widehat{P}_{ba}(z)$: the probability that a fraction of z is given to b of a for $a \to b(X)$

$$
\hat{P}_{qq}(z) = C_F \left[\frac{1+z^2}{1-z} \right] : q \to q(g)
$$
\n
$$
\hat{P}_{gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right] : q \to g(q)
$$
\n
$$
\hat{P}_{qg}(z) = T_R [z^2 + (1-z)^2] : g \to qq
$$
\n
$$
\hat{P}_{gg}(z) = 2C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right] : g \to gg
$$
\n
$$
C_F = \frac{4}{3}, C_A = 3, T_R = \frac{1}{2}
$$

Gluon radiates much stronger than quarks (large C_A) $g \rightarrow qq$ has no divergence, others have infrared divergence @ z=1 or 0

$$
\frac{\mathrm{d}}{\mathrm{d}\log(t/\mu^2)} \int_{-\infty}^{f_q(x,t)} \underbrace{\left(\sum_{s=1}^q \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \prod_{f_q(x/z,t)} \underbrace{\sum_{s=1}^q q_q(z) \frac{q}{z}}_{f_q(x/z,t)} + \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \prod_{f_g(x/z,t)} \underbrace{\sum_{s=1}^q q_q(z) \frac{q}{z}}_{f_g(x/z,t)}
$$

$$
\frac{\mathrm{d}}{\mathrm{d}\log(t/\mu^2)} \frac{f_g(x,t)}{\mathrm{d}\log(t/\mu^2)} \ll 2 \sum_{i=1}^{2n_f} \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \frac{P_{qg}(z) \frac{g}{2\pi}}{f_q(x/z,t)} + \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \frac{P_{gg}(z) \frac{g}{2\pi}}{f_g(x/z,t)} \ll
$$

Extracting gluons (cont'd)

- The data is very well explained by the DGLAP equation
	- Gluon density was determined from the DIS data very precisely
- The triumph of the perturbative QCD!

The fit parameters

- Only the parton densities at the starting scale $Q^2 = Q_{min}^2$ are assumed
	- -3.5 GeV² for the HERAPDF2.0
	- $-$ No explicit parameters on higher Q^2 data: it evolves in Q^2 with the slope determined at the parton distributions at $Q^2 = Q_{min}^2$!
	- $-$ Steeper slope with more gluons at $Q^2=Q^2_{min}$
- Parton density parameterization at $Q^2 = Q_{min}^2$: $xf(x) = Ax^{B}(1-x)^{C}(1+Dx + Ex^{2})$
- Gluon term:

$$
xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}
$$

– Allowing gluon density to be more flexible at very low x values

• Gluon changes the shape drastically from $Q^2 = 1.9$ GeV² to 10 GeV² as a consequence of radiation, described by the DGLAP equation

Evolution towards higher

• Look at the vertical scales! Valences decreased a bit while sea is x6, gluon is x7 at $x = 10^{-4}$

Evolution towards high

- Logarithmic increase/decrease of partons apparent
	- High-x: decreasing
	- Balanced around 0.1
	- Very rapid increase at very low x

High- charged current and neutral current cross sections

DESY and HERA in the west of Hamburg, Germany

HERA tunnel

2-story ring Upper: proton, lower: electron

NC/CC cross sections at high-

- "Direct" confirmation of the electroweak unification
- CC cross sections is larger than NC cross sections for $Q^2 \gg M_W^2$

Disentangling quark flavours

- Valence quarks: carrying the quantum number of the proton
	- $-$ Fermion \rightarrow 3 quarks
	- $-$ Charge +1 (Isospin + $\frac{1}{2}$) \rightarrow (uud)
- Sea quarks: assuming

$$
u=\bar{u}=d=\bar{d}, s=\bar{s}
$$

- Flavour decomposition by charged current (CC)
	- up-type quarks with *e*[−]
	- down-type quarks with *e*⁺
	- different scattering angle distribution for q and \bar{q}
- NC has also different coupling
	- Sensitivity to valence e.g. $u_v = u \bar{u}$

Give constraint also to valence quarks

NC data and valence quark shape

• Sensitive to the valence quark shape confirming that the parameterisation works also at high Q^2

extracting gluons using DIS final states

- Using jets and charm/bottom final state
	- Heavy flavour pair: mostly gluon-induced process

Gluons are better constrained at middle x $(10^{-3} < x < 10^{-1.5})$ c-quark

 $gluon_g$

Further constraining q/g with hadron collisions

- Quark PDF: single vector-boson production
	- $W^+ / W^- \rightarrow \ell \nu$ production: for flavours
	- $-$ Drell-Yan process (γ/Z^0)for completely reconstruct x_1 and x_2
- Gluon PDF: jet production, top-pair production

Combined HERA+LHC fit using 2.76 TeV data

DIS kinematics and detector

DIS kinematic plane and event topology

Processes & Challenges (1): Neutral Current (NC) $ep \rightarrow eX$

low- $x /$ low- Q^2 events

- Scattered electron (e) towards small angle $($ < $179°$)
- Hadrons (X) go to forward (low-y) OR backward (high-y)
- High-y = small energy e to be distinguished with π^{\pm}/π^{0} **from photoproduction events** $\gamma p \rightarrow X$
- *b/c* tagging for decomposing pdf beyond $\eta = 3$ high- $x /$ high- Q^2 events
- electrons almost everywhere

very high-energy jets $(O(TeV))$ also everywhere, especially in forward

■ Hermetic and thick EM and Hadron calorimetry

- Fine granularity for e/π separation (esp. backward)
- Fine-pitch tracking for vertexing
	- for heavy-flavour tagging (esp. forward) The MC

An NC (leptoquark) event at LHeC

Processes & Challenges (2): Charged Current (CC) $ep \rightarrow \nu X$

- A jet like high- $x /$ high- Q^2 NC, but w/o scattered e
	- Kinematics should be reconstructed only from the hadronic system angle and missing p_T
- This also helps for:
	- QCD studies with jets
		- including photoproduction $(e \rightarrow e' \gamma, \gamma p \rightarrow X)$
	- detector cross-calibration using NC DIS:
		- two energies and angles (e and hadronic system): over-constrained

■ Hermeticity (esp. forward) ■ good HadCal resolution $(e/h$ etc.)

• tracking should help (particle flow algorithm)

Diffractive processes at HERA

Diffractive scattering

- Consider hadron-hadron collisions e.g. pp here (simpler)
- The most quiet: elastic scattering
	- No colour exchange between two proton A, B
- Slightly deeper:

The system A may dissociate to multi-hadron state A', or B to B' (dissociation)

- $-$ The masses $m_{A'}, m_{B'}$ are typically small
- These phenomena look similar to optical diffraction
	- No quantum number exchanged, while the spatial distribution is changed
- In this reaction, the exchanged particle carries force, but not quantum numbers, including colours
	- The exchanged particle is due to "Pomeron" in high energy regime

 -0.06

Scattering angle of elastic/diffractive proton at the LHC (collisions)

- You see diffractive peak and dip
- Approximately exponential until the first dip

TOTEM collaboration, EPL 101 (2013) 21002

Fig. 8: (color) Differential elastic cross-section $d\sigma/dt$ at $\sqrt{s} = 13$ TeV. The statistical and |t|-dependent correlated systematic uncertainty envelope is shown as a yellow band.

Fig. 10: The non-exponential part of the data. The statistical and $|t|$ -dependent correlated systematic uncertainty envelope is shown as a yellow band, while the data points show the statistical uncertainty.

38

What is Pomeron, guys?

- It is a light meson-like object
	- but we know that the lightest mesons are not Pomeron
- Most likely: it is a "dressed" gluon
	- Lowest colourless gluonic object: 2-gluon state
	- $-$ Strongly interacting \rightarrow becoming a gluon ladder i.e. not 100% gluonic object
- Questions:
	- Is that a particle, or just an intermediate state?
	- Partonic contents of the object?

From CERN courier

Diffractive DIS (DDIS)

- *Q*² provides a hard scale
	- probing partonic structure
- Main task: $F_2^{\,D(3)}(\beta, \, Q^2, x_P)$
	- Structure function for diffractive processes integrating over t

$$
\int dt \frac{d^4 \sigma_{diff}^{ep}}{d\beta dQ^2 dx_{\mathbf{P}} dt}
$$
\n
$$
\approx \frac{4\pi \alpha^2}{\beta Q^4} \left(1 - y - \frac{y^2}{2}\right) F_2^{D(3)}(\beta, Q^2, x_{\mathbf{P}})
$$

- Sensitive to quarks
- Gluons are "measured" by
	- Jet and HQ production
	- Scaling violation of DDIS using DGLAP eq.

 β : long. momentum fraction of the parton in the exchange *x***P** : long. momentum fraction of the exchange in the proton

Is Pomeron a "particle" ?

- If the cross section is factorised into two part, the Pomeron can be regarded as a particle
	- Pomeron flux $f_{p/\mathbb{P}}(x_{\mathbb{P}},t)$; and
	- $-$ Pomeron structure function $F_2^{\mathbb{P}}(\beta,Q^2)$
- This hypothesis holds quite well: cross section shapes in x_P are independent of β and Q^2
	- If a Pomeron is 2-glu, it should depend on $x = \beta \cdot x_{\mathbb{P}}$ $\rightarrow x_{\mathbb{P}}$ rises steeper with Q^2 reflecting the gluon density in the proton

1

 $\overline{x_P^{2\overline{\alpha_P}}-1}$

41

Scaling violation analysis for $\boldsymbol{g}(\boldsymbol{\beta},\boldsymbol{Q}^{\mathbf{2}})$ in DPDF

- The scaling-violation slopes are positive for most of the β range
	- Quarks are dynamically generated from gluons

 000

– **The diffractive exchange is gluon-rich: in accord to naïve 2-gluon picture**

42

Extracted diffractive parton densities

- Gluons: stronger information from jets and charm
- 63% are gluon at $Q^2 = 10$ GeV

Summary

- DIS provides super microscope for hadrons
- The $F_2(x,Q^2; other variables)$ is well-defined physical observable
	- from which we extract quarks and gluons
	- … and their spin dependence (not covered today)
- Jets, heavy flavour and photon production constrains gluons
- Diffraction will play important role to understand the hadron structure further, in particular at the EIC

BACKUP

Signal of diffraction in *pp* collisions

axis in

- Observation of collimated hadrons (or a proton), system A' and B', in very forward direction
- Large Rapidity Gap (LRG) between the system A' and B'

\n - rapidity
$$
y = \ln \sqrt{\frac{E + P_Z}{E - P_Z}} = \ln \frac{E + P_Z}{m_T}
$$
 beam direction\n $m_T^2 = p_x^2 + p_y^2 + m^2 = p_T^2 + m^2$ \n

\n\n - $y = \eta = -\ln \left(\tan \frac{\theta}{2} \right)$ (pseudorapidity) if $m \to \infty$.\n

Single diffraction Double diffraction

The Pomeron

- Postulated by Pomeranchuk (PL)
- An imaginary composite particle to explain the cross section behaviour in (CM) energy and in t
	- Cross section by Regge theory $d\sigma_{el}$ $\sim \frac{1}{\sigma^2}$ $rac{1}{s^2}$ |A|² ~ $\left(\frac{s}{s_0}\right)$ $2\alpha(t)-2$
		- dt s_0 : $t \sim -p_T^2(recoil\ proton)$ for elastic
		- $\alpha(t)$: Regge trajectory
	- Total cross section from optical theorem

$$
\sigma_{tot}^2 \simeq 16\pi \frac{d\sigma_{el}}{dt}\Big|_{t=0} \to \sigma_{tot}(s) = \sigma_0 \left(\frac{s}{s_0}\right)^{\alpha}
$$

- $-\alpha(t) = \alpha_0 \alpha' t = 1 + \epsilon \alpha' t$: "Pomeron trajectory" Linear approximation α_0 : ~ 1.08, α' ~0.25 GeV⁻²
- We say: "the cross section behaviour is described by Pomeron exchange (or by Pomeron trajectory)"

Nicolo Cartiglia, INFN Torino

