HERAでの PDF 測定 つまりこれまでわかっていること: collinear PDFs, diffractive PDFs

Yuji Yamazaki (Kobe University) EICで展開する新たな原子核,素粒子物理 28 May 2024, Koshiba Hall, Univ of Tokyo

M1のみなさん向けから始めます

- Learning about the basics of DIS and parton densities of hadrons
 - Principle, kinematics, parton density
- Constraining gluon density through jet production
- DIS kinematics and detector requirement
- Diffractive scattering (時間があれば)

小さい構造を見るには 波長の短い波が必要

≶ 0.01 m Crystal 1/10,000,000 10⁻⁹ m Molecule 1/10 10⁻¹⁰ m Atom 1/10,000 10^{-14} m Atomic nucleus 1/10 10^{-15} m Proton

原子核の発見と 散乱実験の始まり

α線を原子核に当て, 核分布から標的の大きさを求める Rutherford experiment (1911) replica

The SLAC experiment and discovery of quarks

- *eN* scattering has excess over elastic scattering in large angle, showing the same behavior as Mott scattering i.e. point-like particle
 - A nucleon consists of overlay of quarks

SLAC-MIT 1967 > 8 GeV electron beam

HERA: the only electron-proton collider (so far)

- Circumference: 6.3 km (similar size to the Tevatron at Fermilab)
- Proton beam: 920 GeV
- Electron/positron beam: 27.5 GeV
- → centre-of-mass energy $\sqrt{s} = 318 \text{ GeV}$ Resolve structure down to 10⁻¹⁸ m
- 220 bunch operation (96ns bunch spacing)
- Operated in 1992-2007

Deep Inelastic Scattering

- Quarks are confined
 - A quark approaching the lower energy ($\Lambda_{QCD} \simeq 200$ the strong coupling constant α_S larger
 - The knocked-out quark will be observed as bound st
- The quark state snapshot may be taken with photon with short wavelength
 - i.e. high-energy lepton-hadron collision

DIS process and kinematics

DIS variables:

 $s = k \cdot p$: CM energy squared

q = k - k': virtual photon 4-momentum $Q^2 = -q^2 = -(k - k')^2$

: negative of the virtual photon 4-momentum squared, indicating the mass of the virtual photon

$$x = \frac{Q^2}{2p \cdot q}$$

: related to the longitudinal momentum fraction of the quark coupled (p_a) to the virtual photon (ξ in the left figure)

 $y = \frac{p \cdot q}{p \cdot k}$: related to the scattering angle & mom transfer They satisfy $sxy = Q^2$ at high energy: massless limit

The variable *x*

- $x = Q^2/2p \cdot q$ is defined only by beam parameters and variables determined from the scattered lepton
 - no need to measure hadronic final state in principle
- It is equal to $\xi = p_q/p$
 - Assuming that all initial & final particle masses are ignored
 - the centre-of-mass energy of the initial quark and

virtual photon $\hat{s} = 2k \cdot p_q = 2\xi k \cdot q = \xi s = \xi \frac{Q^2}{xy}$ (1)

- Assuming $m_q^2 = p_q^2 = p_q'^2 = 0$, $p_q'^2 = (p_q + q)^2 = q^2 + 2p_q \cdot q = -2xp \cdot q + 2\xi p \cdot q$ $= 2p \cdot q(\xi - x) = 0$ (2)
- This leads to: $\underline{x} = \underline{\xi}$ (from (2)) and $\hat{s} = \frac{Q^2}{y} = xs$ (from (1))

The variable y

 e^2 $y = \frac{p \cdot q}{p \cdot k}$: it is the ratio of the photon momentum projected onto the proton direction, to the electron momentum $e_q^2 e^2$ $q(p_q = \xi p)$ projected onto the same direction $q(p_q)$ or: $1 - y = 1 - \frac{p \cdot q}{p \cdot k} = \frac{p \cdot k'}{p \cdot k} = \frac{p_q \cdot k'}{p_q \cdot k}$ p(p)- Let θ^* as the scattering angle in electron-quark CM frame: then $k'(k'_{\perp}, k'_{\parallel}, E) = (k' \sin\theta^*, k' \cos\theta^*, k')$ - In the CM frame, it satisfies |k| = |k'|, hence k $p_a \cdot k' = |p_a| |k'| (1 + \cos\theta^*) = |p_a| |k| (1 + \cos\theta^*)$ $p_q = \xi p$ - Since $p_q \cdot k = 2|p_q||k|$, it leads to $1 - y \simeq \frac{1}{2}(1 + \cos\theta^*)$ p_a or $y = \frac{1}{2}(1 - \cos \theta^*) \simeq \sin^2 \frac{\theta^*}{2}$ for small angle - y = 0: small scattering angle limit

y = 1: backscattering i.e. total momentum transfer to the hadronic system

e(k')

e(k)

The structure function $F_2(x, Q^2)$

• Electron-quark scattering cross section in leading order perturbation theory:

$$\frac{d\hat{\sigma}}{d\hat{t}} = \frac{1}{16\pi\hat{s}} \cdot 2e_q^2 e^4 \cdot \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$$

- e_q : fraction to the unit charge
- Substituting, it gives: $\frac{d\hat{\sigma}}{dQ^2} = \frac{2\pi\alpha^2 e_q^2}{Q^4} [1 + (1 y)^2]$
- defining a point-like quark structure function (SF) as: $\hat{F}_2(x) = xe_q^2 \delta(x \xi)$
 - The SF of a quark, integrating over δ function: $\frac{d^2\sigma}{dQ^2} = \int \frac{4\pi\alpha^2}{Q^4} [1 + (1 y)^2] \frac{1}{2} e_q^2 \delta(x \xi) d\xi$ or: $\frac{d^2\hat{\sigma}}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} [1 + (1 - y)^2] \cdot \frac{1}{2} e_q^2 \delta(x - \xi) = \frac{4\pi\alpha^2}{xQ^4} (1 - y + \frac{y^2}{2}) \hat{F}_2$ Number density of quarks
- Now the contribution from all the quarks to sum up
 - Defining: $F_2(x) = \sum_{q,\bar{q}} \int_0^1 d\xi q(\xi) x \, e_q^2 \, \delta(x-\xi) = \sum_{q,\bar{q}} e_q^2 x q(x)$
 - The cross section is given as: $\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{xQ^4} \left[\left(1 y + \frac{y^2}{2} \right) F_2(x, Q^2) \right]$

In principle, the point-like quark cross section does not depend on Q^2 apart from common kinematic factor But the number of quark changes with Q^2 : see next ¹¹

e(k)

 $q(p_a = \xi_p)$

S

p(p)

e(k')

 $e_{a}^{2}e^{2}$

DIS measurements at HERA and extraction of Parton Density Functions (PDFs)

DIS, and proton structure before HERA

momentum

fraction *x*

Increasing resolution (large Q²)

early fixed target exp'ts

Q ~ 1-3 GeV (10^{-1} fm)

- The wavelength gets shorter with larger Q^2
 - Uncovering more microscopic structure
 - Start to see "sea quarks":
 - a pair of $q\overline{q}$ from vacuum-polarised gluon

 $Q^2 \approx \frac{1}{2^2}$

momentum

fraction x

Q ~ 1-10 GeV (10⁻² fm)

recent fixed target + muon

HERA result

- HERA: higher energy scattering
 - low-x partons are enough energetic to cause
 - e-q scattering to be observed in the detector
- Rapid increase in F_2 i.e. quark density observed

HERA result (*ep* collider 27.5×920 GeV)

Extracting gluons

- The behavior of $F_2(x, Q^2)$ can be explained by the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) differential equation
 - The gluon PDF (parton distribution function) can be extracted by fitting the diff.eq.
 - Qualitatively: the slope in F_2 with Q^2 is given by the ratio of gluon and quark compoments: more gluons, steeper Q^2 dependence

 $\hat{P}_{ha}(z)$: the probability that a fraction of z is given to b of a for $a \to b(X)$

$$\hat{P}_{qq}(z) = C_F \left[\frac{1+z^2}{1-z} \right] : q \to q(g)$$

$$\hat{P}_{gq}(z) = C_F \left[\frac{1+(1-z)^2}{z} \right] : q \to g(q)$$

$$\hat{P}_{qg}(z) = T_R [z^2 + (1-z)^2] : g \to qq$$

$$\hat{P}_{gg}(z) = 2C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right] : g \to gg$$

$$C_F = \frac{4}{3}, C_A = 3, T_R = \frac{1}{2}$$

Gluon radiates much stronger than quarks (large C_A)

 $g \rightarrow qq$ has no divergence, others have infrared divergence @ z=1 or 0

 $P(\alpha) q$

$$\frac{\mathrm{d}}{\mathrm{d}\log(t/\mu^2)} \stackrel{f_q(x,t)}{\longleftarrow} = \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \stackrel{P_{qq}(z)}{\underset{f_q(x/z,t)}{\longleftarrow}} + \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \stackrel{P_{gq}(z)}{\underset{f_g(x/z,t)}{\longleftarrow}} + \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha$$

P(x) q

a1 1

$$\frac{\mathrm{d}}{\mathrm{d}\log(t/\mu^2)} \stackrel{f_g(x,t)}{\longrightarrow} \stackrel{g_{gg}(x,t)}{\longrightarrow} = \sum_{i=1}^{2n_f} \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \quad \stackrel{P_{qg}(z)}{\longrightarrow} \stackrel{g_{gg}(z)}{\longrightarrow} + \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \quad \stackrel{P_{gg}(z)}{\longrightarrow} \stackrel{g_{gg}(z)}{\longrightarrow} \stackrel{g_{gg}(z)}{\longrightarrow} \stackrel{g_{gg}(z)}{\longrightarrow} \stackrel{g_{gg}(z)}{\longrightarrow} = \sum_{i=1}^{2n_f} \int_x^1 \frac{\mathrm{d}z}{z} \frac{\alpha_s}{2\pi} \quad \stackrel{P_{gg}(z)}{\longrightarrow} \stackrel{g_{gg}(z)}{\longrightarrow} \stackrel{g_$$

Extracting gluons (cont'd)

- The data is very well explained by the DGLAP equation
 - Gluon density was determined from the DIS data very precisely
- The triumph of the perturbative QCD!

The fit parameters

- Only the parton densities at the starting scale $Q^2 = Q_{min}^2$ are assumed
 - 3.5 GeV² for the HERAPDF2.0
 - No explicit parameters on higher Q^2 data: it evolves in Q^2 with the slope determined at the parton distributions at $Q^2 = Q_{min}^2$!
 - Steeper slope with more gluons at $Q^2 = Q_{min}^2$
- Parton density parameterization at $Q^2 = Q_{min}^2$: $xf(x) = Ax^B(1-x)^C(1+Dx+Ex^2)$
- Gluon term:

$$xg(x) = A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}$$

 Allowing gluon density to be more flexible at very low x values

Variation	Standard value	Lower limit	Upper limit
<i>Q</i> min2 (GeV2)	3.5	2.5	5.0
Qmin2 (GeV2) HiQ2	10.0	7.5	12.5
<i>Mc</i> (NLO) (GeV)	1.47	1.41	1.53
Mc (NNLO) (GeV)	1.43	1.37	1.49
Mb (GeV)	4.5	4.25	4.75
fs	0.4	0.3	0.5
$\alpha s(MZ2)$	0.118	_	_
μf0 (GeV)	1.9	1.6	2.2

• Gluon changes the shape drastically from $Q^2 = 1.9 \text{ GeV}^2$ to 10 GeV^2 as a consequence of radiation, described by the DGLAP equation

19

Evolution towards higher Q^2

• Look at the vertical scales! Valences decreased a bit while sea is x6, gluon is x7 at $x = 10^{-4}$

Evolution towards high Q^2

- Logarithmic increase/decrease of partons apparent
 - High-x: decreasing
 - Balanced around 0.1
 - Very rapid increase at very low x

High-Q² charged current and neutral current cross sections

DESY and HERA in the west of Hamburg, Germany

HERA tunnel

2-story ring Upper: proton, lower: electron

NC/CC cross sections at high- Q^2

- "Direct" confirmation of the electroweak unification
- CC cross sections is larger than NC cross sections for $Q^2 \gg M_W^2$

Disentangling quark flavours

- Valence quarks: carrying the quantum number of the proton
 - Fermion \rightarrow 3 quarks
 - Charge +1 (Isospin $+\frac{1}{2}$) \rightarrow (uud)
- Sea quarks: assuming

$$u = \overline{u} = d = \overline{d}, s = \overline{s}$$

- Flavour decomposition by charged current (CC)
 - up-type quarks with e^-
 - down-type quarks with e^+
 - different scattering angle distribution for q and \overline{q}
- NC has also different coupling
 - Sensitivity to valence e.g. $u_v = u \overline{u}$

Give constraint also to valence quarks

NC data and valence quark shape

• Sensitive to the valence quark shape confirming that the parameterisation works also at high Q^2

extracting gluons using DIS final states

- Using jets and charm/bottom final state
 - Heavy flavour pair: mostly gluon-induced process

Gluons are better constrained at middle x $(10^{-3} < x < 10^{-1.5})$ c-quark

gluon 💊

Further constraining q/g with hadron collisions

- Quark PDF: single vector-boson production
 - $W^+/W^- \rightarrow \ell \nu$ production: for flavours
 - Drell-Yan process (γ/Z^0) for completely reconstruct x_1 and x_2
- Gluon PDF: jet production, top-pair production

30

Combined HERA+LHC fit using 2.76 TeV data

DIS kinematics and detector

DIS kinematic plane and event topology

Processes & Challenges (1): Neutral Current (NC) $ep \rightarrow eX$

low-x / low- Q^2 events

- Scattered electron (e) towards small angle (< 179°)
- Hadrons (X) go to forward (low-y) OR backward (high-y)
- High-y = small energy *e* to be distinguished with π^{\pm}/π^{0} from photoproduction events $\gamma p \rightarrow X$
- b/c tagging for decomposing pdf beyond $\eta = 3$ high-x / high- Q^2 events
- electrons almost everywhere

• very high-energy jets (O(TeV)) also everywhere, especially in forward

Hermetic and thick EM and Hadron calorimetry

- Fine granularity for e/π separation (esp. backward)
- Fine-pitch tracking for vertexing
 - for heavy-flavour tagging (esp. forward)

An NC (leptoquark) event at LHeC

Processes & Challenges (2): Charged Current (CC) $ep \rightarrow \nu X$

- A jet like high-x / high-Q² NC, but w/o scattered e
 - Kinematics should be reconstructed only from the hadronic system angle and missing p_T
- This also helps for:
 - QCD studies with jets
 - including photoproduction $(e \rightarrow e'\gamma, \gamma p \rightarrow X)$
 - detector cross-calibration using NC DIS:
 - two energies and angles (*e* and hadronic system): over-constrained

Hermeticity (esp. forward)
good HadCal resolution (*e*/*h* etc.)

• tracking should help (particle flow algorithm)

Diffractive processes at HERA

Diffractive scattering

- Consider hadron-hadron collisions e.g. *pp* here (simpler)
- The most quiet: elastic scattering
 - No colour exchange between two proton A, B
- Slightly deeper: The system A may dissociate to multi-hadron state A', or B to B' (dissociation)
 - The masses $m_{A'}$, $m_{B'}$ are typically small
- These phenomena look similar to optical diffraction
 - No quantum number exchanged, while the spatial distribution is changed
- In this reaction, the exchanged particle carries force, but not quantum numbers, including colours
 - The exchanged particle is due to "Pomeron" in high energy regime

Scattering angle of elastic/diffractive proton at the LHC (pp collisions)

- You see diffractive peak and dip
- Approximately exponential until the first dip

Fig. 8: (color) Differential elastic cross-section $d\sigma/dt$ at $\sqrt{s} = 13$ TeV. The statistical and |t|-dependent correlated systematic uncertainty envelope is shown as a yellow band.

Fig. 10: The non-exponential part of the data. The statistical and |t|-dependent correlated systematic uncertainty envelope is shown as a yellow band, while the data points show the statistical uncertainty.

38

What is Pomeron, guys?

- It is a light meson-like object
 - but we know that the lightest mesons are not Pomeron
- Most likely: it is a "dressed" gluon
 - Lowest colourless gluonic object: 2-gluon state
 - Strongly interacting \rightarrow becoming a gluon ladder i.e. not 100% gluonic object
- Questions:
 - Is that a particle, or just an intermediate state?
 - Partonic contents of the object?

Diffractive DIS (DDIS)

- Q^2 provides a hard scale
 - probing partonic structure
- Main task: $F_2^{D(3)}(\beta, Q^2, x_P)$
 - Structure function for diffractive processes integrating over t

$$\int dt \frac{d^4 \sigma_{diff}^{ep}}{d\beta dQ^2 dx_{\rm P} dt}$$
$$\approx \frac{4\pi\alpha^2}{\beta Q^4} \left(1 - y - \frac{y^2}{2}\right) F_2^{D(3)}(\beta, Q^2, x_{\rm P})$$

- Sensitive to quarks
- Gluons are "measured" by
 - Jet and HQ production
 - Scaling violation of DDIS using DGLAP eq.

β: long. momentum fraction of the parton in the exchange $x_{\mathbf{P}}$: long. momentum fraction of the exchange in the proton

Is Pomeron a "particle" ?

- If the cross section is factorised into two part, the Pomeron can be regarded as a particle
 - Pomeron flux $f_{p/\mathbb{P}}(x_{\mathbb{P}}, t)$; and
 - Pomeron structure function $F_2^{\mathbb{P}}(\beta, Q^2)$
- This hypothesis holds quite well: cross section shapes in x_P are independent of β and Q^2
 - If a Pomeron is 2-glu, it should depend on $x = \beta \cdot x_{\mathbb{P}}$ $\rightarrow x_{\mathbb{P}}$ rises steeper with Q^2 reflecting the gluon density in the proton

 $\overline{x_p^{2\overline{\alpha_P}-1}}$

Scaling violation analysis for $g(\beta, Q^2)$ in DPDF

- The scaling-violation slopes are positive for most of the β range
 - Quarks are dynamically generated from gluons

1000

 The diffractive exchange is gluon-rich: in accord to naïve 2-gluon picture

42

Extracted diffractive parton densities

- Gluons: stronger information from jets and charm
- 63% are gluon at $Q^2 = 10 \text{ GeV}$

Summary

- DIS provides super microscope for hadrons
- The $F_2(x, Q^2; other variables)$ is well-defined physical observable
 - from which we extract quarks and gluons
 - and their spin dependence (not covered today)
- Jets, heavy flavour and photon production constrains gluons
- Diffraction will play important role to understand the hadron structure further, in particular at the EIC

BACKUP

Signal of diffraction in pp collisions

- Observation of collimated hadrons (or a proton), system A' and B', in very forward direction
- Large Rapidity Gap (LRG) between the system A' and B'

- rapidity
$$y = \ln \sqrt{\frac{E+P_Z}{E-P_Z}} = \ln \frac{E+P_Z}{m_T}$$
 beam direction
 $m_T^2 = p_x^2 + p_y^2 + m^2 = p_T^2 + m^2$
- $y = \eta = -\ln \left(\tan \frac{\theta}{2} \right)$ (pseudorapidity) if $m \rightarrow$

Single diffraction Double diffraction

The Pomeron

- Postulated by Pomeranchuk (PL)
- An imaginary composite particle to explain the cross section behaviour in (CM) energy and in t
 - Cross section by Regge theory $d\sigma = 1$
 - $\frac{d\sigma_{el}}{dt} \sim \frac{1}{s^2} |A|^2 \sim \left(\frac{s}{s_0}\right)^{2\alpha(t)-2}$
 - : $t \sim -p_T^2$ (recoil proton) for elastic
 - $\alpha(t)$: Regge trajectory

REGGEON f612 **Regge trajectories** CX(1)=0.5+0.9t articles f4,[a4] PION Ct(t)=0+0.7t an ρ3,ω3 OMERON f2,a π. (X(1)=1.1+0.25t t=M 2 (GeV 2) 2 Im

Nicolo Cartiglia, INFN Torino

$$\sigma_{tot}^2 \simeq 16\pi \frac{d\sigma_{el}}{dt}\Big|_{t=0} \to \sigma_{tot}(s) = \sigma_0 \left(\frac{s}{s_0}\right)^{\alpha_0}$$

- $\alpha(t) = \alpha_0 \alpha' t = 1 + \epsilon \alpha' t$: "Pomeron trajectory" Linear approximation α_0 : ~ 1.08, $\alpha' \sim 0.25 \text{ GeV}^{-2}$
- We say: "the cross section behaviour is described by Pomeron exchange (or by Pomeron trajectory)"