Type: oral contribution

Isovector and isotensor forces in sd-shell

Wednesday, 22 August 2018 15:40 (15 minutes)

Isochronous mass spectrometry has been applied in the storage ring CSRe to measure the masses of the $T_z=-3/2$ nuclei $^{27}{\rm P}$ and $^{29}{\rm S}$ in sd-shell. The new mass excess value is 66(52)-keV larger than the result of the previous $^{32}{\rm S}(^3{\rm He},^6{\rm He})^{29}{\rm S}$ reaction measurement in 1973 and a factor of 3.8 more precise. The new result for $^{29}{\rm S}$, together with those of the T=3/2 isobaric analog states (IAS) in $^{29}{\rm P}$, $^{29}{\rm Si}$, and $^{29}{\rm Al}$, fit well into the quadratic form of the Isobaric Multiplet Mass Equation IMME. The mass excess of $^{27}{\rm P}$ has also been remeasured. By analyzing the linear and quadratic coefficients of the IMME in the $T_z=-3/2$ sd-shell nuclei, it was found that the ratio of the Coulomb radius parameters is $R\approx 0.96$ and is nearly the same for all T=3/2 isospin multiplets. Such a nearly constant R-value, apparently valid for the entire light mass region with A>9, can be used to set stringent constraints on the isovector and isotensor components of the isospin non-conserving forces in theoretical calculations.

Primary authors: Mr FU, Chaoyi (Institute of modern physics); Dr ZHANG, Yuhu (Institute of Moden Physics)

Co-authors: Dr ZHOU, Xiaohong (Institute of Moden Physics); Dr WANG, Meng et al., (Institute of Modern

Physics)

Presenter: Mr FU, Chaoyi (Institute of modern physics)

Session Classification: YSS