## Large-scale shell-model study of two-neutrino double beta decay in 82Se

Monday, 7 August 2023 17:25 (15 minutes)

Double-beta  $(\beta\beta)$  decay is one of the rarest second-order weak interaction processes with two major decay modes: two-neutrino  $(2\nu)$  and neutrinoless  $(0\nu)$ . Mayer [1] first introduced the  $2\nu\beta\beta$  decay process as a nuclear disintegration with the simultaneous emission of two electrons and two antineutrinos. This process is allowed by lepton number conservation. The study of  $2\nu\beta\beta$  decay provides an important test for the standard model and insights into the properties of neutrinos, which are currently a subject of intense research in nuclear and particle physics.

The half-life for the  $2\nu\beta\beta$  decay can be given as,  $t_{1/2}^{2\nu}=\frac{1}{G^{2\nu}g_A^4|M_{2\nu}|^2}$ . Here,  $G^{2\nu}$  denotes the phase-space factor [2];  $g_A$  is the axial-vector coupling strength [3];  $M_{2\nu}$  is the nuclear matrix element (NME) for  $2\nu\beta\beta$  decay. There are several candidates for  $2\nu\beta\beta$  decay in the nuclear chart, and among them,  $^{82}$ Se is an important candidate for this process. We have performed systematic shell-model calculations for studying the  $2\nu\beta\beta$  decay process in  $^{82}$ Se. The jun45 effective interaction [4] is used to calculate the nuclear matrix element (NME) for  $2\nu\beta\beta$  decay, having the  $0f_{5/2}1p0g_{9/2}$  proton and neutron orbitals. For the calculation of NME, we have calculated 1000 intermediate  $1^+$  states in  $^{82}$ Br up to the excitation energy of 7.427 MeV. Here, the experimental value for the energy of the lowest  $1^+$  state in  $^{82}$ Br is taken at 0.075 MeV. Using the shell-model calculated value of NME, we have extracted the half-life of  $^{82}$ Se for  $2\nu\beta\beta$  decay as  $0.68\times10^{20}$  yr. This value is very close to the average value  $0.87^{+0.02}_{-0.01}\times10^{20}$  yr given in Ref. [5].

## References:

- [1] M. Goeppert-Mayer, Phys. Rev. 48, 512 (1935).
- [2] A. Neacsu, and M. Horoi, Adv. High Energy Phys. 2016, 7486712 (2016).
- [3] J. T. Suhonen, Front. Phys. 5 55 (2017).
- [4] M. Honma  $et\ al.$ , Phys. Rev. C **80**, 064323 (2009).
- [5] A. S. Barabash, Universe 6, 159 (2020).

## Presentation type

Oral presentation

Primary author: Mr PATEL, Deepak (IIT Roorkee)

Co-author: Prof. SRIVASTAVA, Praveen C. (IIT Roorkee)

**Presenter:** Mr PATEL, Deepak (IIT Roorkee)

**Session Classification:** Young Scientist Session II