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Most of the elements heavier than iron are produced
through the rapid neutron capture process(r-process). The r-
process path passes through the neutron-rich side of 132Sn.
We compute the low-energy nuclear properties contributing
to the β-decay half lives by using the Monte-Carlo shell
model (MCSM). In this paper, we focus on the southwest
region of 132Sn. We employ the same model space with the
large-scale shell model calculation in Ref. [1], which con-
sists of the five neutron orbitals betweeen N = 50 and 82
and the nine proton orbitals between Z = 28 and 82. The
effective interaction is taken from the SNV interaction and
the remaining part is given by the phenomenological VMU
interaction. Moreover, the monopole interaction strengths
are decreased by 10% to reproduce the low-energy spectra
as shown in Fig. 1.

The upper pannel of Fig. 2 shows the Gamow-Teller tran-
sition strength of 130Cd. In the MCSM calculation, we
adopt several tens of basis vectors optimized for low-energy
eigenstates. This prescription is not enough to reproduce
the Gamow-Teller transition. We utilize an unitary trans-
formation for the many-body bases to describe the states
strongly connected to the ground state of the parent nucleus
through the Gamow-Teller transition operator.

Figure 1. The energy spectra of N = 80 and 82 nuclei. The
results of MCSM calculations are shown with filled symbols.

The Gamow-Teller transition operator is defined by

G±,µ =

A∑
a=1

τ±(a)σµ(a), (1)

where σµ(a) and τ±(a) denote the spin and isospin opera-

tors, and G†
+,µ = G−,µ. Using the commutation relations

3∑
i,j=1

[
G+,i, G−,j

]
=

A∑
a=1

2iεijkσk(a)τ+(a)τ−(a)

+

A∑
a=1

σi(a)σj(a)τz(a), (2)

the sum rule is given as∑
µ,ν=0,±1

〈
ψJ,M

∣∣[G+,µ, G−,ν

]∣∣ψJ,M

〉
=

3∑
i=1

〈
ψJ,M

∣∣G+,i

∣∣ψn

〉〈
ψn

∣∣G−,i

∣∣ψJ,M

〉
−

3∑
i=1

〈
ψJ,M

∣∣G−,i

∣∣ψn

〉〈
ψn

∣∣G+,i

∣∣ψJ,M

〉
= 3(N − Z), (3)

where
∣∣ψJ,M

〉
is the ground state and

∣∣ψn

〉
is the interme-

diate states of the daughter nucleus. Our goal is to construct
a set of basis vectors {|ψn⟩} that almost exhausts the sum
rule.

In the MCSM calculation, the ground state is expressed
with deformed Slater determinants, one of which is given
by

∣∣ϕ〉 =

Nf∏
k=1

a†k|−⟩, (4)

a†k =

Nsp∑
α=1

Dαkc
†
α, (5)

where |−⟩ denotes the inert core occupied by a definite
number of nucleons. The number of nucleons within the
model space is Nf and the number of the single-particle
states is Nsp.

The deformed Slater determinant is decomposed into the
proton and neutron parts as∣∣ϕ〉 =

∣∣ϕ(π)〉⊗ ∣∣ϕ(ν)〉, (6)

where ∣∣ϕ(τ)〉 =

Nτ∏
k=1

a†τ,k|−⟩, (7)

a†τ,k =

N(τ)
sp∑

α=1

D
(τ)
αk c

†
τ,α, (8)



for τ = π, ν. Using the QR decomposition algorithm, we
can construct theN (τ)

sp ×N (τ)
sp unitary matrixD

(τ)
extended

from D(τ). The creation operator can then be extended for
k = 1, 2, · · · , N (τ)

sp as

a†τ,k =

N(τ)
sp∑

α=1

D
(τ)

αk c
†
τ,α. (9)

The Gamow-Teller operator can be expressed as

G−,µ =
∑
αβ

〈
α
∣∣τ−σµ∣∣β〉c†αcβ

=

N(π)
sp∑

i=1

N(ν)
sp∑

j=1

〈
π, i

∣∣σµ∣∣ν, j〉a†π,iaν,j , (10)

where the one-body matrix elements for the new basis vec-
tors are defined by〈

π, i
∣∣σµ∣∣ν, j〉 =

∑
αβ

〈
π, α

∣∣σµ∣∣ν, β〉D(π)∗
αi D

(ν)

βj . (11)

Considering a basis vector
∣∣ϕ〉,

G−,µ

∣∣ϕ〉 =

Nν∑
j=1

∣∣ϕµj〉, (12)

where∣∣ϕµj〉 =

Nπ∏
k=1

a†π,kb
†
π,µj

Nν∏
k( ̸=j)

a†ν,k|−⟩, (13)

b†π,µj =

N(π)
sp∑

α=1

B
(π)
µ,αjc

†
π,α, (14)

B
(π)
µ,αj = (−1)j−1

N(π)
sp∑

i=Nπ+1

D
(π)

αi

〈
π, i

∣∣σµ∣∣ν, j〉. (15)

To completely satisfy the sum rule, we need the 3Nν basis
vectors for each

∣∣ϕ〉. The total dimension 3Nν × Ng.s. be-
comes large as the number of basis vectors used to describe
the ground state denoted by Ng.s.. We should economize
the computational costs by selecting a small number of ba-
sis vectors that almost satisfy the sum rule.

When the ground state is expressed with only one basis
vector, the sum rule is given by

〈
ϕ
∣∣G+,µG−,µ

∣∣ϕ〉 =

Nν∑
i,j=1

〈
ϕµi

∣∣ϕµj〉. (16)

This is conserved with the unitary transformation of the
neutron single-particle levels

Nν∑
j=1

∣∣ϕµj〉 = det(U)

Nν∑
j=1

∣∣ϕµj〉
=

Nν∑
j=1

∣∣ϕ′µj〉. (17)

We utilize the unitary matrix U to diagonalize the ma-
trix (16), and adopt 50 bases from the largest eigenvalue.
The lower pannel of Fig. 2 shows the Gamow-Teller transi-
tion strengths obtained by this prescription, where the sum
rule is almost satisfied.

Figure 2. The Gamow-Teller transition strength of 130Cd. The
blue lines are the folded strength functions by a Lorentzian
function with 1 MeV width.
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