Type: Experimental Nuclear Physics

Study of the excited $^9{\rm Li}$ core in $^{11}{\rm Li}$

Tuesday, 23 August 2022 13:45 (15 minutes)

 11 Li nucleus is one of the flagship drip-line nuclei in the field of nuclear physics. A spatially extended structure of neutrons in 11 Li, which is now widely known as "halo" structure, opened the very active field of research with unstable nuclear beams. 11 Li have the nature of Borromean.[1] In many cases, 11 Li is considered as a 3-body system of 9 Li + 2 neutrons. However, recent theoretical studies pointed out that contribution of the excited 9 Li core can be significant. According to the interpretation of [2], the ground state of 11 Li has components which contain excited state of the core. In Ref [3], they showed that the E1 cluster sum rule value should be reduced by about 15% due to the 9 Li core excitation. Currently no experiment has succeeded in providing a direct information of the excited 9 Li core in 11 Li.

In this work, with the data of SAMURAI18 experiment, the quasi-free 11 Li(p,pn) 9 Li* reaction was employed to study the excited 9 Li core. Because of spin-parity constraints, the first bound excited state of 9 Li cannot contribute much and the 2nd state, which is unbound, can give the major contribution. Therefore, the 9 Li excited core will decay into the 8 Li + neutron. Using the invariant mass spectrum and dalitz plot of 8 Li + 2 neutrons, we could get the direct information of the exited 9 Li core in 11 Li.

- [1] M. V. Zhukov, et al., Phys. Rep. 231, 151 (1993).
- [2] G. Potel, F. Barranco, E. Vigezzi, and R. A. Broglia, Phys. Rev. Lett. 105, 172502 (2010)
- [3] Y. Kikuchi, et al., Phys. Rev. C 87, 034606 (2013).

Primary author: Mr LI, Yutian (Riken Nishina Center)

Presenter: Mr LI, Yutian (Riken Nishina Center)

Session Classification: Young Scientist Session 3